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Our Syllabus
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Topic Date Lecture Lab

Omics Data Science 

Foundations

Jan. 6 Omics data processing, statistics and visualization --

Jan. 13 From raw data to functional insights --

Transcriptomics Jan. 20 Gene expression data analysis (part I) ExpressAnalyst & NetworkAnalyst

Jan. 27 Gene expression data analysis (part II) ExpressAnalyst & Seq2Fun

Proteomics, Networks, & 

Biomarkers

Feb. 3 Biological network analysis & gene regulatory networks NetworkAnalyst & miRNet

Feb. 10 Proteomics & biomarker analysis ExpressAnalyst & MetaboAnalyst

Metabolomics Feb. 17 Targeted metabolomics data analysis MetaboAnalyst

Feb. 24 LC-MS untargeted metabolomics data analysis MetaboAnalyst

Microbiomics Mar. 2 Marker gene data analysis MicrobiomeAnalyst

Mar. 9 Functional microbiome data analysis MicrobiomeAnalyst

Multi-omics Mar. 16 Knowledge-driven multi-omics integration OmicsNet

Mar. 23 Data-driven multi-omics integration OmicsAnalyst



Schedule for today
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Time Topics

9:00 – 9:10 Overview of data-driven multi-omics

9:10 – 9:50 Dimensionality reduction

9:50 – 10:10 Live demo & hands-on

10:15 – 10:40 Correlation analysis

10:40 – 10:55 Live demo & hands-on

10:55 – 11:10 Clustering analysis

11:10 – 11:25 Live demo & hands-on

Summary & Discussion



Omics general workflow
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Raw data 

preprocessing

From raw data to 
data table

Statistical 

analysis & 

visualization

Functional 

interpretation

Insights & 
hypothesis

Data processing 

& normalization

Prepare data table for 
analysis

Significant features & 
patterns

Omics specific

Platform specific
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MetaboAnalyst

ExpressAnalyst

MicrobiomeAnalyst

OmicsNet

OmicsAnalyst

Single omics to multi-omics

LC-MS spectra

Bulk RNA-seq

Microbiome

Signature Lists

Normalized Tables



Common workflows in multi-omics analysis
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Prediction

Correlation

Interpretation

Aim Strategy
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Multi-omics integration via knowledge graph

1. Perform comprehensive analysis on 

individual omics data to identify key 

signatures

2. Project the signatures from each omics 

layer to a knowledge graph

3. Customize the networks to suitable form

4. Visualize and apply different algorithms for 

network analysis & interpretation

7

Connect the dots



Knowledge-driven networks
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MetaboAnalyst

ExpressAnalyst

MicrobiomeAnalyst

A list of metabolites 
or LC-MS peaks

A list of genes or 
proteins

A list of microbes / 
taxa or genes 

Qualitative Analysis
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Data & model driven integration

9

1. Require large sample sizes (> 20 per 

group) and strictly matching samples 

2. Perform de novo identification of 

shared patterns and correlations 

across different omics layers

3. Examine the main contributing features 

to infer their functional implications. 

4. Visualization and analysis (i.e. 

enrichment analysis) to interpret 

results

Quantitative Analysis
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Main challenges in quantitative analysis

High dimensional
Omics data is high-dimensional 

o Multi-omics is ultra high-dimensional 

Size difference when integration
Transcriptomics: 10,000s 

Proteomics: 1000s 

Metabolomics: 100s ~ 1000s

Microbiome: 100s ~ 1000s 

Scale difference when integration
Can be of very different scale (order of magnitude)

Raw intensity values / counts can be  ~1,000,000

Normalized values can be -1 ~ 1

Samples

Omics A

Omics B

F
e

a
tu

re
s

Omics C
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Key Strategies
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Data filtering

o Make data comparable in size

Data scaling

o Make data similar in scale

Correlation analysis

o Focus on correlated features

Clustering analysis

o Reveal shared patterns (univariate)

Dimensionality reduction

o Reveal global patterns (multivariate)

X1

X2
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Correlation

Dimension 

reduction

Clustering

Overall design of OmicsAnalyst

Built-in filtering & scaling 
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Under the hood

13

3D Scatter Plot View

• Scores, loading, biplots

• Targeted cluster analysis

• View customizations

Joint Heatmap View

• Comparison with meta-data

• Dynamic feature clustering

• Pattern extraction and analysis

Data Harmonization

Data upload

Data annotation

Missing value

estimation

Data filtering

Significant feature 

detection

Visual AnalyticsMethod Selection

Quality Check
Parameter 

Check

Correlation Analysis

• Univariate correlation 

• Partial correlation

• Multivariate correlation

Dimensionality Reduction

• Multiple co-inertia analysis

• Multi-omics factor analysis

• DIABLO

Clustering Analysis

• Spectrum Clustering

• Similarity network fusion

Correlation Network View 

• 12 automatic layouts

• Module detection

• Enrichment analysis

Scaling



Feature Relationships 

(Networks)
Global Covariations 

(Dimension Reduction)

Patterns Discovery

(Dual Heatmaps)

MCIA

mbPCA

Procrustes

DIABLO

rCCA

sPLS

Dimensionality Reduction

Spectrum

Univariate/Partial 

correlation

Perturbation

Silhouette

K-means

Density-based

Correlations & Clustering

Inputs

Methods

Visual 

Analytics

Data Overview & Quality Check

Diagnostic Plots & Parameter Selection



Data Input

● Max five omics data 
○ Recommended

■ Processed & normalized data table follow the best practices of individual 

omics fields 

● A metadata table
○ Must all share the same sample IDs

○ No missing values are allowed for metadata

● When some samples are missing, only the overlap samples 

will be used in joint analysis

15



Data Filtering & Scaling

 Different omics data types often have very different number of features and variances

 Many multi-omics integration methods are sensitive to imbalanced dimensionality or 

variance (i.e. omics layer containing many more features or large variance could 

dominate the analysis)

 It is advisable to perform data processing to make them more comparable

16



General Considerations

 Number of features 

 Stronger filtering for larger omics data

 Feature abundance values are at similar scale

 Unit scaling (auto-scaling), pareto, mean-centering, range

17



Schedule for today
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Time Topics

9:00 – 9:10 Overview of data-driven multi-omics

9:10 – 9:50 Dimensionality reduction

9:50 – 10:10 Live Demo

10:15 – 10:40 Feature correlation analysis

10:40 – 10:55 Live Demo

10:55 – 11:10 Clustering analysis

11:10 – 11:25 Live Demo

Summary & Discussion
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Dimensionality Reduction

19

From single omics to multi-omics
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About Dimensionality Reduction

20

• To compute a low-dimensional 

representation that captures the main 

characteristics of the high-dimensional data

• Main assumptions

1. There are redundancies in omics data

Molecules involved in the same biological processes 

that are often correlated

2. Typical summary statistics (variance, 

covariance) can capture the main 

characteristics of the data
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Evolution of Dimensionality Reduction

21

PCA PLS-DA CCA MOFA MCIA DIABLO
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Principal Component Analysis (PCA)

22

A

B
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From k original variables: x1,x2,...,xk:

Produce k new variables: t1,t2,...,tk

t1 = a11x1 + a12x2 + ... + a1kxk

t2 = a21x1 + a22x2 + ... + a2kxk

...

tk = ak1x1 + ak2x2 + ... + akkxk

PCA details

23

Such that:

• tk's are uncorrelated (orthogonal)

• t1 explains as much as possible of original 

variance in data set

• t2 explains as much as possible of remaining 

variance, etc.

Linear combinations



Scores & Loadings

● Scores: samples in the low-dimensional space 
○ Can be used to view patterns

● Loadings: feature coefficients –covariances/correlations between the 

original variables and the samples in new 
○ Can be used to view main feature contributors to the patterns of interest

24

Loadings



Partial least squares- discriminant analysis (PLS-DA) 

 When the experimental effects 

are subtle or moderate, PCA will 

not show good separation 

patterns 

 PLS-DA is a supervised method 

that uses multiple linear 

regression technique to find the 

direction of maximum covariance 

between a data set (X) and the 

class membership (Y)

25



PCA    PLS-DA 

X



PCA vs PLS (variance vs co-variance)

26

Directions identified 

by PCA vs PLS-DA 

can be different

PCA PLS

Group 1

Group 2



Extend to multiple omics datasets

27

X1 X2



Joint Dimensionality Reduction (jDR)

 Mainly extensions of PCA and PLS-DA

 Simultaneously project multiple data tables to a shared low-

dimensional space with or without consideration of class 

labels.

 Each method computes components that maximize some 

statistical terms.

 The maximized term can integrate multiple statistics, which is 

the key concept in jDR

28



Canonical Correlation Analysis (CCA)

 To extract latent features shared 

between multiple data by finding 

the linear combinations of features-

referred to as canonical variables 

(CVs)-within each data that achieve 

maximal cross-matrix correlation

 Assume linear model

 Limited to n > p (i.e. more samples 

than features)
 Not suitable for omics

29



Multiple co-inertia analysis (MCIA)

● Inertia is a measure for the variability of 

the data
○ The inertia of an object is the tendency of an 

object at rest to stay at rest. The inertia of an 

object suspended from its centroid is directly 

related to how widely dispersed the mass is 

away from its centroid

● The inertia of a set of points relative to one 

point P is defined by the weighted sum of 

the squared distances between each 

considered point and the point P.
○ The inertia of a centered matrix (mean is 

equal to zero) is simply the sum of the 

squared matrix elements.

30

Low inertia

High inertia



Multiple co-inertia analysis (MCIA)

● Co-inertia is a global measure for the co-variability of two data 

sets (for example, two high-dimensional random variables). If 

the data sets are centered, the co-inertia is the sum of squared 

covariances

● MCIA is very similar to CCA, performed in a two steps.
1. Dimension reduction method is performed on each individual data.

2. Project the two dimensionally reduced matrices into a same 

hyperspace while imposing the constraint of maximizing covariance 

between each matrix.

31



MCIA vs CCA

● MCIA performs well when the number of features are much greater 

than the number of samples (i.e. omics data)

● MCIA finds components that simultaneously maximize sources of 

variability within each dataset, and correlation of the components 

across datasets. This means that MCIA components capture 

variability trends that are shared across all omics datasets.

● It is more robust to outliers and has fewer tuneable parameters

● MCIA is symmetric, therefore the order that the 'omics datasets are 

uploaded will not impact the results

32



Multi-Omics Factor Analysis (MOFA)

● Generalization of PCA to multi-

omics data

● MOFA identifies latent factors that 

capture the main sources of 

variation across the different omics 

datasets. These factors are derived 

from multiple data types 

simultaneously. 

● Each factor represents a biological 

or technical signal that is shared 

across the datasets to varying 

degrees.

33



MCIA vs. MOFA

34

 MCIA identify components simultaneously but separately in each layer, 

by maximizing a term that includes variance of each data and correlation 

across data.
 This finds a balance between components that both explain a substantial 

proportion of the variability within each layer and are shared across layers.

 MOFA first performs an additional normalization step to correct for 

systematic differences in ‘shape’. Then all omics features are directly 

merged into the same matrix, and subject to PCA.
 There is no stipulation that components should be correlated across layers, 

it is possible for some components to be almost 100% driven by one omics 

layer. This allows us to find both shared and complementary factors across 

omics layers



How should I choose?
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https://www.nature.com/articles/s41467-020-20430-7



Results

MCIA, MOFA, and RGCCA showed the best performance among the set of methods not 

intrinsically designed for clustering. In the cancer data benchmark, when we evaluated 

the associations of the factors with survival or clinical annotations, MCIA, JIVE, MOFA, 

and RGCCA were the most efficient methods.

36

https://www.nature.com/articles/s41467-020-20430-7
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Prediction & Classifcation

37

Issue: unsupervised jDR methods identify features that are 

highly correlated but led to poor discriminative ability.  



Naïve approach on classification & prediction

Same sample size, feature # drastically increase
 Most models will become worse (i.e. overfitting) 

Mix different scales (OTU counts & concentrations)
 Most models cannot accommodate

Different sizes (100s metabolites ~1000s OTUs ~ 10,000s genes)
 Larger data will dominate the analysis

38

 Integrating dimensionality reduction into classification



DIABLO

 Data Integration Analysis for Biomarker discovery using Latent cOmponents

(DIABLO)

 Aims to identify coherent patterns between datasets that change with respect 

to different phenotypes.

 DIABLO is supervised as it also considers the variance of a single metadata 

variable (Y). 

39

http://mixomics.org/mixdiablo/



Balance between covariance and predictivity

 DIABLO maximizes the ability of the components to explain metadata of 

interest and the covariance across omics data.

 The covariance parameter adjusts the weight of these two goals. A value of 0 

does not consider covariance at all (i.e. maximizing separation w.r.t metadata 

of interest). A value of 1 does not consider the metadata at all (i.e. maximizing 

covariance across omics layers), making it very similar to MCIA.

40



Balance between covariance vs predictivity

41

Covariance:        0 0.2 0.4



Dimension Reduction track in OmicsAnalyst

42
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Live Demo



Background

● Mouse multi-omics data on the effect of Ikaros 
transcription factor on B-cell differentiation

● Transcriptomics, Metabolomics, miRNA

● Metadata
○ Condition: Control/Ikaros

○ Hours: 6 time points

44



Meta-data table
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...

Samples in rows, metadata group in columns

Make sure to exclude metadata group that only contains a single group.

#NAME Condition Hours

ExpBatch_4_Ctr_0H Control 0

ExpBatch_5_Ctr_0H Control 0

ExpBatch_6_Ctr_0H Control 0

ExpBatch_1_Ctr_2H Control 2

ExpBatch_2_Ctr_2H Control 2

ExpBatch_3_Ctr_2H Control 2

ExpBatch_1_Ctr_6H Control 6

ExpBatch_2_Ctr_6H Control 6



#NAME
ExpBatch_4_Ctr
_0H

ExpBatch_5_Ctr
_0H

ExpBatch_6_Ctr
_0H

ExpBatch_1_Ctr
_2H

ExpBatch_2_Ctr
_2H

ExpBatch_3_Ctr
_2H

14 679 333 635 846 900 0

125 445 801 737 410 0 0

6 760 859 254 769 530 0

2 384 965 643 682 740 0

29 871 350 435 14 500 0

128 581 881 319 748 0 0

21385 71 57 78 118 113 208

Omics data 1 - transcriptomics

46

Processed data matrix

Samples in columns, features in rows (Entrez id).

...

...



Omics data #2 - Metabolomics
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...
#NAME

ExpBatch_4_Ctr
_0H

ExpBatch_5_Ctr
_0H

ExpBatch_6_Ctr
_0H

ExpBatch_1_Ctr
_2H

ExpBatch_2_Ctr
_2H

ExpBatch_3_Ctr
_2H

L-alanine -3.333886528 -3.566670709 -3.334565659 -3.465540105 -3.463538345 -3.480633266

L-valine -2.60779176 -2.580898264 -2.639031945 -2.653962763 -2.419245868 -2.674895098

L-leucine -0.7383760937 -0.7210036958 -0.7365760366 -0.7540796458 -0.5528035158 -0.7612671865

L-isoleucine -0.9030187379 -0.8728933483 -0.8723921073 -0.911032888 -0.7003566833 -0.9015899957

L-proline -0.3515642722 -0.4706083831 -0.2820267917 -0.4413077748 -0.3774078751 -0.4527157762

L-serine -0.5342528962 -0.5899708848 -0.294968172 -0.6464348978 -0.5102116352 -0.6290129246

L-threonine -0.01139138761 -0.03973069086 0.02112760135 -0.07398530376 0.1181168918 -0.06997232867

...



#NAME
ExpBatch_4_Ctr
_0H

ExpBatch_5_Ctr
_0H

ExpBatch_6_Ctr
_0H

ExpBatch_1_Ctr
_2H

ExpBatch_2_Ctr
_2H

ExpBatch_3_Ctr
_2H

mmu-let-7g-3p 99 112 185 85 60 9

mmu-miR-1a-3p 0.2 0.2 0.2 0.2 0.2 0.2

mmu-miR-15b-
5p 25915 28316 25890 36141 21100 5348

mmu-miR-15b-
3p 4135 3687 5975 4817 2407 645

mmu-miR-23b-
5p 11 20 24 2 2 1

mmu-miR-23b-
3p 2824 2812 4048 3319 1905 406

mmu-miR-27b-
5p 460 596 747 1161 919 120

Omics data #3 - Metabolomics

48

...



Schedule for today

49

Time Topics

9:00 – 9:10 Overview of data-driven multi-omics

9:10 – 9:50 Dimensionality reduction

9:50 – 10:10 Live Demo

10:15 – 10:40 Feature correlation analysis

10:40 – 10:55 Live Demo

10:55 – 11:10 Clustering analysis

11:10 – 11:25 Live Demo

Summary & Discussion
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Feature Correlation Analysis



What are informative features?

1. Features that are significant associated with phenotype
○ Differential expression analysis (univariate)

■ T-tests, ANOVA, limma, Fold change

○ Already discussed in the previous lectures

2. Features that are highly correlated across omics layers
○ Univariate correlation analysis

■ Parametric

■ Non-parametric

■ Partial correlation

○ Multivariate correlation analysis
■ Features that have large loadings in the jDR methods

51



Within-omics and between-omics correlation

Current Opinion in Biotechnology 2016, 39:198–206

52



Pearson’s covariance & correlation

1

))((

),(cov 1









n

YyXx

yx

n

i

ii

cov(X,Y) > 0       X and Y are positively correlated

cov(X,Y) < 0       X and Y are inversely correlated

cov(X,Y) = 0       X and Y are independent
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yx
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r

varvar
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Pearson’s Correlation Coefficient is 

standardized covariance (unit-less)

Measures the relative strength of the linear relationship between two variables



Partial correlation

 The partial correlation coefficient is a measure of the strength of the linear relationship 

between two variables after entirely controlling for the effects of other variables

54

https://towardsdatascience.com/partial-correlation-508353cd8b5

Correlation Matrix Partial Correlation Matrix



Pearson Correlation Coefficient Limitations

Source: wikimedia commons

They are correlated!!

55



Detecting nonlinear correlations - Mutual Information

 Maximal Information Coefficient (MIC)

56

http://www.exploredata.net



Nonlinear correlations - distance correlation 

 Computes distance covariance and distance correlation statistics, which are 

multivariate measures of dependence.

57

http://www-stat.stanford.edu/~tibs/reshef/comment.pdf



Correlation analysis in OmicsAnalyst

Feature level correlation 

analysis comparing 1000s vs 

1000s features (> 1 million 

comparisons!)

 Significant features only

 Use linear methods

58



Correlation network 
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There are systematic 

difference in between-omics 

and within-omics correlations

 Apply different cut-offs



Correlation vs. partial correlation

60

Pearson correlation Pearson partial correlation



Multi-omics correlation network

61

Between omics only Within and between omics



Correlation Analysis track in OmicsAnalyst

62



63

Live Demo



Summary

64

1. Feature selection
• Significant features from DE analysis

• Top features identified from dimensional reduction methods

2. Correlation analysis among selected features
• Correlation or partial correlation

3. Network building
• Inter-omics/Intra-omics relationships

• Control size through correlation threshold

4. Network visualization and analysis
• 2D/3D

• Topological and enrichment analysis (if applicable)



Background

● Human multi-omics data on pregnancy progress
● Lipidomics, RNA-seq

● Metadata (4 groups)
○ First trimester

○ Second trimester

○ Third trimester

○ Baseline

65



Meta-data table
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...

Samples in rows, metadata group in columns

Make sure to exclude metadata group that only contains a single group.

#NAME Condition

PTLG002_1 First_tri

PTLG003_1 First_tri

PTLG004_1 First_tri

PTLG005_1 First_tri

PTLG007_1 First_tri

PTLG008_1 First_tri

PTLG009_1 First_tri

PTLG010_1 First_tri



Omics data 1 - proteomics

67

Processed data matrix

Samples in columns, features in rows.

...#NAME PTLG002_1 PTLG003_1 PTLG004_1 PTLG005_1 PTLG007_1 PTLG008_1

STUB1 1084 916.7 744.4 831 1033.4 786.2

CEBPB 396.2 492.2 541.4 544.7 558.4 456.1

ENO2 7065.9 6341.9 8916 5317.6 4022.1 5128.8

...



Omics data #2 - Metabolomics

68

#NAME PTLG002_1 PTLG003_1 PTLG004_1 PTLG005_1 PTLG007_1 PTLG008_1

N1-Methyl-2-
pyridone-5-
carboxamide 0.0550991485 0.06030218125 0.0745380945 0.04959586675 0.0507334805 0.133186114

Barringtogenol 
C 0.05766222871 0.07476740471 0.1102784697 0.08434155943 0.2133026861 0.1387500359

3beta-Acetoxy-
11alpha-
methoxy-12-
ursen-28-oic 
acid 0.057382463 0.056692533 0.067014164 0.0516164 0.091558005 0.134262229

Basilimoside 0.04493315375 0.0590499555 0.0632840915 0.05531613575 0.117367835 0.13811012

2s-Pyrrolidin-2-
Ylmethylamine 0.040983833 0.049911143 0.053143402 0.045142262 0.045710933 0.132127336

...

...



Schedule for today
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Time Topics

9:00 – 9:10 Overview of data-driven multi-omics

9:10 – 9:50 Dimensionality reduction

9:50 – 10:10 Live Demo

10:15 – 10:40 Feature selection and correlation

10:40 – 10:55 Live Demo

10:55 – 11:10 Clustering analysis

11:10 – 11:25 Live Demo

Summary & Discussion
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Clustering Analysis

70



Common clustering algorithms for omics data

 Hierarchical clustering 

 K-means clustering

 Spectrum clustering

 Similar Network Fusion



Hierarchical clustering & heatmap

Find two most

similar metabolite

expression levels

or curves

Find the next

closest pair

of levels or

curves Iterate

A

B

B

A

C

A

B

C

D

E

F

 Produces a set of nested clusters in which 

each pair of objects is progressively nested 

into a larger cluster until only one cluster 

remains

 No explicit set for cluster number – OK for 

human, hard for computer 



K-means

73

https://en.wikipedia.org/wiki/K-means_clustering

Goal: minimize the cost which is de ned as the 

sum of squared distances between all data 

points and their cluster centers.

Initialisation: set seed points (randomly)

1) Assign each object to the cluster of the nearest 

seed point measured with a specific distance 

metric

2) Compute new seed points as the centroids of 

the clusters of the current partition (the centroid 

is the centre, i.e., mean point, of the cluster)

3) Go back to Step 1), stop when no more new 

assignment (i.e., membership in each cluster 

no longer changes)



K-means – the value of K

Testing with different K 

values. 

Tries to minimize the 

within-cluster sum of 

squares error (WCSS)



Spectrum clustering

● K-means algorithm generally assumes 

that the clusters are spherical or round 

i.e. within k-radius from the cluster 

centroid

● Spectral clustering helps us overcome 

two major problems in clustering: one 

being the shape of the cluster and the 

other is determining the cluster centroid

● Spectrum combines the strengths of 

several other methods: an adaptive 

density-aware kernel is used to 

strengthen connections in the graph 

based on common nearest neighbors. 

75



Spectrum clustering

● Key steps in Spectrum clustering
1. Compute a weighted adjacent matrix is derived from the input 

dataset. 

2. Compute eigenvalues and eigenvectors of this matrix to partition the 

data.

3. Apply K-means on the “embedding” space to derive clustering

● OmicsAnalyst uses the eigengap mode in the Spectrum R 

package, which is suited for Gaussian distributed data

76
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Similar Network Fusion (SNF)

77

SNF generates an integrated sample similarity matrix from multiple 

'omics datasets by first computing similarity matrices for each dataset 

individually, and then fusing them together.

1. Individual similarity matrices are computed using an exponential similarity 

kernel that scales the Euclidean distance between samples.

2. These matrices are then fused together by an iterative approach that adjusts 

each matrix to make it more similar to the others.

3. The SNF algorithm is iterated until the matrices converge.

The fused network captures both shared and complementary information from 

different data sources
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Similar Network Fusion Workflow

78



Clustering Analysis in OmicsAnalyst

79



Clustering analysis track in OmicsAnalyst

80

To understand relationships between samples and clusters across two 'omics 

datasets.

1. First, cluster analysis is performed on the samples using methods that 

integrate information from all 'omics datasets.

2. Interactive heatmaps (one for each dataset) are placed side-by-side to 

allow visual identification and subsequent enrichment analysis of features 

that correspond to either the detected clusters or the experimental groups.
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Live Demo



Eigenvalue per cluster number

● "Eigengap" method to identify 
the optimal number of clusters

● Assumption:
○ The eigenvalues can reveal the 

intrinsic clustering structure of the 
dataset by indicating points of 
significant change

● The cluster number where largest 
drop in eigenvalue happens.

● Not a hard rule. It's a heuristic to 
help you choose.

82



Eigengap example

83



Schedule for today
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Time Topics

9:00 – 9:10 Overview of data-driven multi-omics

9:10 – 9:50 Dimensionality reduction

9:50 – 10:10 Live Demo

10:15 – 10:40 Feature selection and correlation

10:40 – 10:55 Live Demo

10:55 – 11:10 Clustering analysis

11:10 – 11:25 Live Demo

Summary & Discussion



General comments on DR

 Mainly for exploratory analysis

 Very complex

 Common performance evaluation methods cannot be readily 

applied
 P values

 Permutations

 Cross validations 

 How to make choices? 

85
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Some rules of thumb to reduce false patterns

86

Occam's razor, assuming that the simplest consistent hypothesis about the target 

function is actually the best.

Minimal number of features and simple algorithms

Minimum cross-validation error: when trying to choose among hypotheses, 

select the hypothesis with the lowest cross-validation error.

Maximum separation distance: when drawing a boundary between two classes, 

attempt to maximize the width of the boundary. The assumption is that distinct 

classes tend to be separated by wide boundaries.

Nearest neighbors: assume that most of the cases in a small neighborhood 

in feature space belong to the same class. The assumption is that cases that are 

near each other tend to belong to the same class.
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Combining multiple independent methods
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Correlation network of high-magnitude 

loadings from the top 3 components.
View features from dimension reductions



Visualization & biology
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Overlay statistics and 

knowledge annotation

Different perspectives



Conclusions
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Towards AI co-pilot

90



Empowering research 

● AI can do straightforward, time-consuming tasks
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Tasks Grounding Status

Run data analysis workflow Our validated pipelines ✓

Generate analysis report Report / slide templates ✓

Provide FAQs & writing 

summary (manuscript draft)

Searching literature & forum Ongoing 

Manuscript 1.0 Your turn --

We will send you the Zoom invitation in May 



Certificate
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Your Name Here

contact@xialab.ca with your name

mailto:contact@xialab.ca


Help pass the word 

 Three times per year
 Winter session: Saturday morning, Jan. - March.

 Fall session: Saturday morning, Sept. - Nov.

 Summer bootcamp: tentatively Aug. 5 - 9

 You are welcome to attend (need to register)
 Active membership (annual)

 Same selections  
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Thank you & see you in May!


