XiaLab Analytics

Empowering researchers through trainings, tools and Al ) ,
https://www.xialab.ca < contact@xialab.ca

Omics Data Science Training Course

Winter 2024



Schedule for today

Time

Topics

‘ 9:00-9:10

Introduction

9:10-10:10 Gene expression data analysis workflow
10:15-11:25 Live demo & hands-on practice
Summary and discussion
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Our Resources

Recordings & slides

» https://www.xialab.ca under
the “Training” tab within 3
days after lecture

» Faster with Firefox

Community tool:

> https://www.####.ca

Pro Tools:
» https://pro.#it#.ca

% You will be assigned to one
of the three nodes
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Omics Data Science (winter 2024)

The slides and videos will be made available below after each lecture. Your account information are required to access the materials. You can create one using the registration email.

v Week 1 - Overview (Part I)

XiaLab Analytics
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[Lecture]: Overview of omics
technologies and data analysis
. . ] workflow
Omics Data Science Training Course
 Video : (download)
« Lecture slides: (download)

Winter 2024

> 0:00/1:58:10



https://www.xialab.ca/

ExpressAnalyst Docker

.yw’lﬂaxs
Some of you reported that Kallisto d k N\ /
has some issues running inside OcCKer

Docker under Windows OS.

2000+

We are in the process of
» Adding support for the Salmon e
algorithm as an alternative
» Building a VM image to better control
the environment 500-
« Recommend 32G RAM, 8 CPU cores

1997
1374.8

826.41
54.87 | 33.74 5.12
— -
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1000~

minutes
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What we have covered so far

Raw data From raw data to a
preprocessing data table

A

Data processing & Prepare data table for
analysis

normalization

Statistical analysis
& visualization

XiaLab.ca
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Significant
patterns

eatures &

— =

Functional
interpretation

Insights &
hypothesis



Our Syllabus

Topic Date Lecture Lab
Omics Data Science [Jan. 6 Omics data processing, statistics and visualization --
Foundations Jan. 13 From raw data to functional insights --

Transcriptom-uan. 20

Gene expression data analysis (part 1)

ExpressAnalyst & NetworkAnalyst

Jan. 27 Gene expression data analysis (part Il) ExpressAnalyst & Seq2Fun
miRNAs & non- Feb. 3 MicroRNAs, noncoding RNAs and biological networks miRNet & NetworkAnalyst
coding RNAs
Proteomics Feb. 10 Proteomics data analysis and interpretation ExpressAnalyst & NetworkAnalyst
Metabolomics Feb. 17 Targeted metabolomics data analysis MetaboAnalyst

Feb. 24 LC-MS untargeted metabolomics data analysis MetaboAnalyst
Microbiomics Mar. 2 Marker gene data analysis MicrobiomeAnalyst

Mar. 9 Shotgun metagenomics data analysis MicrobiomeAnalyst
Multi-omics Mar. 16 Knowledge-driven multi-omics integration OmicsNet

Mar. 23 Data-driven multi-omics integration OmicsAnalyst

XiaLab.ca
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Measuring Gene Expression

> Q-PCR
o 10s~100s (costly for large-scale)

» Largely deprecated:
o ESTs (expressed sequence tags)
o SAGE (serial analysis of gene expression)

» Microarray
» RNAseq

XiaLab.ca
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Evolution of transcriptomics technologies

1995 P. Brown, et. al.
Gene expression profiling
using spotted cDNA
microarray: expression
levels of known genes

XiaLab.ca
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|

2002 Affymetrix, whole
genome expression profiling
using tiling array: identifying
and profiling novel genes
and splicing variants

2008 many groups, mRNA-
seq: direct sequencing of
mRNAs using next
generation sequencing
techniques (NGS)



XiaLab Tools for gene expression analysis

# ExpressAnalyst A unified platform for expression analysis
.,;.".'-' ";-: NetworkAnalyst Understanding gene lists for model species

<‘><¢<><}>{ EcoToxXplorer Quantitative PCR (gPCR) 96/384-well plates

XiaLab.ca
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A web-based tool for qPCR data analysis

» 384-well plate
» One file per plate
» Two column format
« well ID
« raw Ct values

XiaLab.ca
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EcoToxXplorer

\ Comprehensive analytical pipelines for toxicogenomics data

( EcoToxChip Analysis RNAseq Expression Profiling

FEATURES

HF P

ECOTOXCHIP ANALYSIS INTERACTIVE EXPLORATION SEVERAL DATA INPUTS
Directly analyze EcoToxChip results here toguide ~ Generate common statistical plots (e.g., volcano plots  Start analysis using many types of inputs including
decision-making for several ecological species and use or heatmaps) or use novel tools (e.g., EcoToxBMD, RNAseq, microarray, or gPCR.
cases. EcoToxMods) to analyze toxicogenomics data

https://www.ecotoxxplorer.ca
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Schedule for today

Time

Topics

9:00-9:10

Introduction

‘ 9:10 - 10:10

Gene expression data analysis workflow

10:15-11:25

Live demo & hands-on practice

Summary and discussion
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Microarray Data Analysis
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Microarray core tasks

Input: probe intensity file

1. Processing
O Mapping probe IDs to gene/transcript IDs (sum / average)
O Quality checking to make sure data are suitable for analysis

2. Data normalization
O Make data comparable across different arrays/samples
** Quantile normalization

3. Differentially expression (DE) analysis
O Find genes that are significantly different between conditions
*®* Limma

4. Clustering
O Find genes with similar expression patterns

5. Interpreting the results
O Find which pathways or biological processes are changed

XiaLab.ca
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Quantile Normalization (l)

» Considered the best normalization method for microarray data

» Quantile: a distribution based on the rank order of values in that distribution.

O You can find any quantile by sorting the sample. The middle value of the sorted
sample (middle quantile, 50th percentile) is known as the median. The limits are the
minimum and maximum values. Any other locations between these points can be
described in terms of centiles/percentiles.

First quartile Third quartile
@) (&)
Minimum (Q,) \ Median (Q,) / Maximum (Q,)
25% 25%

25% 25%
I I
IQR

Box
| | | [ 1 | | | | | |
| O L L L L LI — 1 1 1
10 30 50 70 90 110 130 150 170 190 210 230 250

Circumference (mm) «—— 1 numeric variable
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Quantile Normalization (ll)

» Assume most of the probes/genes don’t change between
samples

» Calculate mean for each quantile and reassign each probe by
the quantile mean

O No experiments retain value, but all experiments have exact same distribution
O Only their orders are different

Experiments Mean

PrObeS E E
XiaLab.ca
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Quantile Normalization (lll)

Order values Average across rows Re-order averaged
Raw data within each sample and substitute value values in original
(or column) with average order
5 14 |4 7 3 8 5.0 (5.0 8.5 |85 |55 |35
4 8 6 9 8 4 7 GG | S || S8 6.5 | 5.0 (85 |85
3 8 5 8 4 5 8 6.5 6.5 | 6.5 50 |55 (65 |65
5 14 |6 9 85|85 |85 |85
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Identical Distribution after Quantile Normalization
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Thoughts on normalization

> Improve signals & reduce noises

> Compare things that are “comparable”
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doi: http://dx.doi.org/10.1101/012203
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Differential Expression Analysis (DEA)
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Simple Approaches

» Fold change
> T-test /ANOVA

XiaLab.ca

Fold change
Ametric for comparinga
gene’s mRNA-expression level
between two distinct
experimental conditions. Its
arithmetic efinition differs
between investigators.

consensus

Gene-expression microarrays have become almost as
widely used as measurement tools in biological research
as western blots (BOX 1). A wide range of methods for
microarray data analysis have evolved, ranging from
simple fold-change (FC) approaches to testing for differ-
ential expression, to many complex and computation-
ally demanding techniques®. The result might seem like

Empowering researchers through trainings, tools, and Al

V'Microarray data analysis: from
disarray to consolidation and

David B. Allison**5, Xiangqin Cui*S, Grier P. Page* and Mahyar Sabripour*

Abstract | In just a few years, microarrays have gone from obscurity to being almost
ubiquitous in biological research. At the same time, the statistical methodology for
microarray analysis has progressed from simple visual assessments of results to a weekly
deluge of papers that describe purportedly novel algorithms for analysing changes in gene
expression. Although the many procedures that are available might be bewildering to
biologists who wish to apply them, statistical geneticists are recognizing commonalities
among the different methods. Many are special cases of more general models, and points of
consensus are emerging about the general approaches that warrant use and elaberation.

most design strategies. The relative merits of specific
designs are discussed elsewhere'+7,

Consensus point 1: Biological replication is essential.
In microarray analysis, two types of replication can be
carried out: technical replication, when mRNA from a
single biological case is used on multiple microarrays,

‘hing Group http://www.nature.com/naturebiotechnology

nature
biotechnology

Rat toxicogenomic study reveals analytical consistency
across microarray platforms

Lei Guo!, Edward K Lobenhofer?, Charles Wang3, Richard Shippy", Stephen C Harris!, Lu Zhangs, Nan Meil,
Tao Chen!, Damir Herman®, Federico M Goodsaid’, Patrick Hurban?, Kenneth L Phillips?, Jun Xu?,
Xutao Deng’, Yongming Andrew Sun®, Weida Tong!, Yvonne P Dragan' & Leming Shi!

To validate and extend the findings of the MicroArray Quality Control (MAQC) project, a biol. y

data set was generated using 36 RNA samples from rats treated with three chemicals (aristolochic acid, riddelliine and
comfrey) and each sample was hybridized to four microarray platforms. The MAQC project assessed concordance in

intersite and cross-platform comparisons and the impact of gene selection methods on the reproducibility of profiling

data in terms of differentially expressed genes using distinct reference RNA samples. The real-world toxicogenomic data

set reported here showed high concordance in intersite and cross-platform comparisons. Further, gene lists generated by
fold-change ranking were more reproducible than those obtained by t-test P value or Significance Analysis of Microarrays.
Finally, gene lists generated by fold-ch: king with a tri t P-value cutoff showed increased consistency in Gene
Ontology terms and pathways, and hence the biol | impact of ct | exp could be reliably deduced from all
platforms analyzed.

Consensus point 1: Using fold change alone as a
differential expression test is not valid. FC was the
first method used to evaluate whether genes are dif-
ferentially expressed, and is a reasonable measure
of effect size. However, it is widely considered to be
an inadequate test statistic*®*** because it does not
incorporate variance and offers no associated level of
‘confidence™®*. Using FC alone with a fixed cut off,
regardless of sample size or variance, results in type 1
error rates that are either unknown or depend on sam-
ple size, and even tests for which power can decrease
with increasing sample size.
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Volcano plot: best of both worlds?

10 T 14
L]
)
& . * Down 0.1
=1 Not Sig Weak evidence
7 * . * 0.05
Moderate evidence
51 o . E 0.01
o Strong evidence
0.001
Very strong evidence
0
0.0001
-10 -5 0 5
logFC

https://doi.org/10.1016/j.tree.2021.10.009

" XiaLab.ca
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https://doi.org/10.1016/j.tree.2021.10.009

Issues with t-tests / ANOVA

1. When the sample size is small (e.g.
2-3 replicates in each condition), t-
tests will not work well

O Variance estimation becomes unstable
for very few data points!

2. Observational studies contain many
uncontrolled variables (covariates):

O Biological: sex, age, disease status
O Environmental: location, lifestyle,
temperature

XiaLab.ca
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Age 65-79
Age 80+

Without COVID-19

_.—/’ \\
Age 0-14
Age 0-14
Age 15-64
Age 65-79
Age 15-64

With COVID-19

22



m— i

~ s/yn

t = Student's t-test

Empirical Bayes t

“Borrow information” to improve variance estimation b = eorsatvae
for indiViduaI gene T = variable set size

Predicted variance based
on all genes (i.e. weighted

Group difference
average, trimmed means) N

0
B is the shrinkage factor: \/ B\GZ_I_ (1 _ B)

A 2
thes 0)
e B=0 => standard t tests
« B=1=>fold change Variance observed on

the specific genes

XiaLab.ca
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T-test vs. linear regression

® You can do t-test with linear regression:
i y = BO + B-I*X

O y: level of metabolite A

O X: variable of interest . == 3, (group 1 mean)

== (3, (slope = difference)

Essentially, a hypothesis test on the slope is asking

whether or not the slope is 0

' XiaLab.ca
- Empowering researchers through trainings, tools, and Al 24



Common statistical tests are linear models

Common name

Built-in function in R Equivalent linear model in R Exact? | The linear model in words Icon

y is independent of x 5
P: One-sample t-test t.test(y) Im(y ~ 1) v One number (intercept, i.e., the mean) predicts y. o
N: Wilcoxon signed-rank wilcox.test(y) Im(signed_rank(y) ~ 1) for N >14 | - (Same, but it predicts the signed rank of y.) '.
P: Paired-sample t-test t.test(ys, y2, paired=TRUE) Im(y2 -y: ~ 1) v One intercept predicts the pairwise Y-y, differences. _’L
N: Wilcoxon matched pairs | wilcox.test(y,, y», paired=TRUE) Im(signed_rank(y, - y1) ~ 1) for N >14 | - (Same, but it predicts the signed rank of y»-y;.) )
y ~ continuous x 7
P: Pearson correlation cor.test(x, y, method="Pearson’) Im(y ~ 1+ x) v One intercept plus X multiplied by a number (slope) predicts y. .403
N: Spearman correlation cor.test(x, y, method="Spearman’) | Im(rank(y) ~ 1 + rank(x)) for N>10 | - (Same, but with ranked x and y)
y ~ discrete x g
P: Two-sample t-test t.test(ys, y2, var.equal=TRUE) Im(y ~ 1+ G)* v An intercept for group 1 (plus a difference if group 2) predicts y. 3 Z‘f
P: Welch'’s t-test t.test(ys, y2, var.equal=FALSE) gls(y ~ 1 + Gz, weights=...5)* v - (Same, but with one variance per group instead of one common.) Y
N: Mann-Whitney U wilcox.test(y:, y») Im(signed_rank(y) ~ 1 + G, for N>11 | - (Same, but it predicts the signed rank of y.)

. [
P: One-way ANOVA aov(y ~ group) Im(y ~ 1+ Gy + Gs +...+ Gy)* v An intercept for group 1 (plus a difference if group # 1) predicts y. i AU
N: Kruskal-Wallis kruskal.test(y ~ group) Im(rank(y) ~ 1 + G, + G +...+ Gy)* for N>11 | - (Same, but it predicts the rank of y.)

XiaLab.ca
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Limma: linear models for microarray data

The de facto method for differential expression data analysis
O Support simple and complex design
O Empirical Bayes for small sample size
o Efficient & high performance

HT™L] limma powers differential expression analyses for RNA-sequencing and
microarray studies

ME Ritchie, B Phipson, DI Wu, Y Hu... - Nucleic acids ..., 2015 - academic.oup.com

... Over the past decade, limma has been a popular choice for ... Recently, the capabilities of
limma have been significantly ... This article reviews the philosophy and design of the limma ...
Y% Save Y9 Cite Cited by 26407 Related articles All 22 versions

XiaLab.ca
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Limma for DEA

« Treatment (Control/BPA)

« Sex (male/female)

» Features associated with
treatment while considering
sex

o Treatment = primary
o Sex = covariate

« Can include many
covariates

« Primary/covariate can be
continuous or discrete

XiaLab.ca
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CoNIZFL_couizr2_ GoNeF

)

[ZE

e |

R — S S S S S—— ——"
I ™ R R I ™ R ]
-- all ~15k transcripts --

Plekhg3 Treatment Sex
1281 BPA Female
1227 BPA Female
1263 BPA Female
990 BPA Female
546 Control Female
687 Control Female
561 Control Female
661 ~ b *1 control + b *1 remale
866 1 BPA 2 Male
799 BPA Male
895 BPA Male
925 BPA Male
930 Control Male
498 Control Male
579 Control Male
744 Control Male

~ +

by * X4

—

b, * X,

Extract the coefficient, t-statistic, and p-value for
the ‘Treatment’ term from the linear model fit

Perform linear regression
for each transcript

Compile all results in a table

Symbols __ BPA-Control t PValie  adiPal
Maz 018999 27563 0015091 0052129
Slc11a2 0.27426 2.7561 0.015096 0.052133
Cyhr 01355 27557 001511  0.052166
Theld2b 026692 27554 0015117 0052177
satl 061953 27552 0015124 0052188
Cers2 0.16232 2.7549 0.015131 0.052188
Coxt1 031728 27543 0015133 0052188
Ccdc117 049021 2.7548 _ 0.015136 0052188
0 031436 2.754001516_0052246)
-0.44288 -2.754 0.015161 0.052246

17%2 27534 0015178 0052275

-0.16546 27534 0015178 0052275

020745 27533 0015181 0052275

022709 27523 0015212 0052371

0.49729 2.7521 0.015217 0.052371

024975 27518 0015226 0052389

024983 27517 0015229 0052389

023162 -27513 0015242 0052419

0.17861 2.7507 0.01526 0.052463

0.18645 27506 0015263 0052463

-0.24522 275 0015281 0052513

Marveld2 032542 274% 0015292 0052537
0.21623 2.7487 0.015321 0.052621

0.4224 2748 0015342 0052679

015424 27468 0015378 0052791

022411 -27463 0015394 0052804

0.16652 2.7462 0.015395 0.052804

l -- all ~15k transcripts -- ¢
Cep97 035878 27449 0015436 0052847
slc35a1 020103 27448 0015438 0052847
Aifm3 090739 27433 0015484 __ 005299
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RNAseq Data Analysis
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RNAseq core tasks

Input: FASTQ files

1. Reads are mapped to reference genome or transcriptome
Mapped reads counted per gene or per transcripts
Counts are tested statistically for significant difference
Enrichment analysis are applied for functional insights

B 0D

XiaLab.ca
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Data Flow

genome and gene

annotation files
SAM/BAM

Sig. Pathways

' XiaLab.ca
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Read Mapping

E——s Eas 4 ==
EeEe——s e =,/

e e e
BT B e [ co— ]

Exon A xonBJ  ExonC

Processed mRNA

Mapping to genome

Aligns reads to the whole genome AND to exon-junctions

Gapped Read Aligner

XiaLab.ca
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Gapper Read Aligners &

Mapper

> 1st generation
* TopHat

» 2nd generation
« HISAT/STAR

» 3'd generation
« Kallisto/Salmon

XiaLab.ca
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—

m—)

Steven Salzberg

Bloomberg Distinguished Professor, Johns Hopkins University.
Verified email at jhu.edu - Homepage

Computational Biology Genomics Bioinformatics Metagenomics Biomedical Data Science

TITLE CITED BY YEAR

Fast gapped-read alignment with Bowtie 2 43951 2012
B Langmead, SL Salzberg
Nature methods 9 (4), 357-359

Ultrafast and memory-efficient alignment of short DNA sequences to the human genome 22757 2009
B Langmead, C Trapnell, M Pop, SL Salzberg
Genome biology 10 (3), 1-10

The sequence of the human genome 20143 2001
JC Venter, MD Adams, EW Myers, PW Li, RJ Mural, et al.
Science 291 (5507), 1304-1351

HISAT: a fast spliced aligner with low memory requirements 15533 2015
D Kim, B Langmead, SL Salzberg
Nature methods 12 (4), 357-360

" Lior Pachter Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and 15017 2010
N isoform switching during cell differentiation

Bren Professor of Computatic C Trapnell, BA Williams, G Pertea, A Mortazavi, G Kwan, MJ Van Baren, .

Verified email at caltech.edu - Nature biotechnology 28 (5), 511-515

‘TopHat: discovering splice junctions with RNA-Seq 13091 2009
C Trapnell, L Pachter, SL Salzberg

Bioinformatics 25 (9), 1105-1111
TITLE CITED BY YEAR

Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and 15019 2010
isoform switching during cell differentiation

C Trapnell, BA Williams, G Pertea, A Mortazavi, G Kwan, MJ Van Baren, ...

Nature biotechnology 28 (5), 511-515

TopHat: discovering splice junctions with RNA-Seq 13091 2009
C Trapnell, L Pachter, SL Salzberg
Bioinformatics 25 (9), 1105-1111

Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and 12536 2012
Cufflinks

C Trapnell, A Roberts, L Goff, G Pertea, D Kim, DR Kelley, H Pimentel, ...

Nature protocols 7 (3), 562-578

Initial sequencing and comparative analysis of the mouse genome 8443 2002
European Bioinformatics Institute: Birney Ewan 3 Goldman Nick 3 Kasprzyk ...
Nature 420 (6915), 520-562

Near-optimal probabilistic RNA-seq quantification 7356 2016
NL Bray, H Pimentel, P Melsted, L Pachter
Nature biotechnology 34 (5), 525-527
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» Salmon is based on the concept of quasi-mapping.
It uses a suffix array to discover shared substrings
of any length between a read and the complete set 16001
of transcripts. Mismatches are handled with chains
of maximally exact matches (MEM).

2000+

1374.8

minutes

» Kallisto does not perform alignment or use a

Salmon & Kallisto (mapper not aligner)
reference genome. It performs pseudoalignment to

500+

determine the compatibility of reads with targets ol I I —— T4 88

(transcript sequences in this case). Based on k-mer TopHatz Bownez aownez Saiffish| Saimon kallisto

(042)
and Targeted de Bruijn Graph (T-DBG) Cuffinks RSEM eXpress

Kallisto and Salmon assign reads to genes (mapping)

without perform exact alignments.

XiaLab.ca
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RNAseqg Common Files

Sequence files Alignment files
- FASTA - SAM
« FASTQ * BAM

Feature annotations
* GFF (general feature format)

« GTF (gene transfer format)

XiaLab.ca
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SAM: Sequence Alighment Map

SA M — a ta b _d e I i m ited teXt fi I e Il:es wmf;zi.::o pse“j:;’f‘;z:s'com%ﬁ:.4k 3332:.5k 3332‘.6k 3332‘.7k 3332:.8k 3332:.9k 333=3k
that contains a compact and s ||| L

-

index-able representation of
nucleotide sequence alignments = = = —

BAM — binary versionof SAM 0w —= =

> Save space
» Faster 1/O

XiaLab.ca
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GFF (general feature format)

Chrl amel 0GSv3.1 gene 204921 223005 . + . ID=GB42165
Chrl amel 0GSv3.1 mMRNA 204921 223005 . + . ID=GB42165-
RA; Parent=GB42165
Chrl amel 0GSv3.1 3’UTR 222859 223005 . + . Parent=GB42165-RA
Chrl amel 0GSv3.1 exon 204921 205070 . + . Parent=GB42165-RA
Chrl amel 0GSv3.1 exon 222772 223005 . + . Parent=GB42165-RA
Source End location Strand T
Chromosome ID Start location
Gene feature Phase

1. seqname - name of the chromosome or scaffold; chromosome names can be given with or without the 'chr' prefix. Important note: the seqname must be one used with
a standard chromosome name or an Ensembl identifier such as a scaffold ID, without any additional content such as species or assembly. See the example GFF output

. source - name of the program that generated this feature, or the data source (database or project name)
. feature - feature type name, e.g. Gene, Variation, Similarity

. start - Start position of the feature, with sequence numbering starting at 1.

. end - End position of the feature, with sequence numbering starting at 1.

. score - A floating point value.

. strand - defined as + (forward) or - (reverse).

. frame - One of '0', '"1' or '2". '0' indicates that the first base of the feature is the first base of a codon, '1' that the second base is the first base of a codon, and so on..

© 0O N O O A WO DN

. attribute - A semicolon-separated list of tag-value pairs, providing additional information about each feature.

" XiaLab.ca
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Task #2: generate gene counts

XiaLab.ca
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From “alighed” reads to gene counts

GeneA GeneB GeneC

Things can get
“complicated”

XiaLab.ca

Empowering researchers through trainings, tools, and Al

intersection intersection

union _strict _nonempty
read
B
ad
gene_A = gene_A no_feature gene_A
read
gene s |mmm = gene_A no_feature gene_A
read read
e | QA gene_A gene_A gene_A
read
gene_A gene_A gene_A gene_A
gene B
read ambiguous
EnETY (both genes with ~ gene_A gene_A
gEnelt --nonunique all)
ad
gene A — ambiguous
gene B (both genes with --nonunique all)
[ _read |
/ \ ? alignment_not_unique

(both genes with --nonunique all)

https://htseq.readthedocs.io/en/latest/htseqcount.html
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Calculating gene expression from read counts

% The expression level of the gene -
% This is what we want to estimate —

GeneA GeneB GeneC
 The total number of the reads generated

¢ If one library is sequenced at 20M reads and the other library is
sequenced at 40M reads, then most genes will ~double their counts

* The length of the transcript
¢ Larger genes will generate more fragments

% GC-content of the gene

¢ GC-rich and GC-poor fragments tend to be under-represented in
RNA-Seq

XiaLab.ca
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Quantifying expression from read mapping

Normalize for gene size and sequencing depth

» RPKM: Reads per kilobase of transcript per million mapped reads
(single-end).

» FPKM: Fragments per kilobase of transcript per million mapped reads
(paired-end).

» TPM: Transcripts per kilobase of transcript per million mapped reads

q; q; 9
i i = = 1
RPKM; or FPKM, S Y x 10
[T ’
TPM, — i /l; «10° gi denotes reads mapped to transcript,

>-i(ai/l) l; is the transcript length

XiaLab.ca
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Comments on different quantification

RPKM/FPKM/TPM

» Good for the comparison of RNA transcript expression within a single
sample

Raw Counts

» Input for more robust statistical methods for differential expression to

compare the same genes across samples
» The effect of the gene length is the same!
» We are only concerned with relative difference

» Accommodates more sophisticated experimental designs

XiaLab.ca
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Two widely used protocols

Condition A

Condition B

PROTOCOL

R Differential gene and transcript expression analysis S - NS
Mapped Mapped o 3 ]
Yf of RNA-seq experiments with TopHat and Cufflinks e
Step2 Cole Trapnell*?, Adam Roberts’, Loyal Goff'*%, Geo Pertea®®, Dachwan Kim*’, David R Kelley'2, Harold Pimentel®, S
/ \ Steven L Salzberg™®, John L Rinn'? & Lior Pachter**® ot Ao
experiment
Mappir)g r;,:lads,
. epec g ‘_-
! e
anscnpome , L ‘
asser:bly ‘ 4 :/ Data s(;cﬂfves,
Mapzed 1?;’;:%:22;5‘
seps PROTOCOL‘ 2.group differential | GLM-based differential I
comparison comparisons
L] L] L] [ ]
¢ Count-based differential expression analysis of RNA
expression resua . . N
sequencing data using R and Bioconductor {
Steps 6-18 Simon Anders!, Davis ] McCarthy23, Yunshun Chen%3, Michal Okoniewski®, Gordon K Smyth%7,

Wolfgang Huber! & Mark D Robinson8?

Expression
plots

¢
=

XiaLab.ca
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Steps 1 and 2

Steps 3-6

Steps 7-12

Step 13

Step 14
edgeR DESeq

Additional sanity
e



A gene count table

XiaLab.ca

NAME

ENSMUSG00000023868
ENSMUSG00000029538
ENSMUSG00000064141
ENSMUSG00000020986
ENSMUSG00000024811
ENSMUSG00000038781
ENSMUSG00000022159
ENSMUSG00000002103
ENSMUSG00000024608
ENSMUSG00000022037
ENSMUSG00000027108
ENSMUSG00000033540
ENSMUSG00000021910
ENSMUSG00000039156
ENSMUSG00000021959
ENSMUSG00000020364
ENSMUSG00000020415
ENSMUSG00000015340
ENSMUSG00000025875
ENSMUSG00000017734
ENSMUSG00000022787
ENSMUSG00000031834
ENSMUSG00000002428
ENSMUSG00000026064
ENSMUSG00000041420
ENSMUSG00000027297

Empowering researchers through trainings, tools, and Al

X454039
219
424

32
198
475

2

96

888
1504

57
410
359

4407
2518
345

586
4749
574
122
110
25
85
123
44

X454051
49
376
4
167
255
2
31
505
868
32
323
138
2380
1181
228

958
2689
156
46
66
17
61
79
13

X454057

42

191

4

100

194

2

29

298

613

184
90
1497
706
134

439
1880
101
27
32
15
44
30

X454066
50
436
22
203
442
2
59
638
1521
12
392
279
3471
1821
277

915
4618
231
64
66
29
109
93

X454081
6
529
76
158
384

102
541
1083

396
483
7348
383
700
16
212
1582
514
231
178
259
246
31
116

X454090
17
1172
165
475
1365

222
1570
3077

1145
1382
19703
948
1720
36
464
5098
1389
450
336
700
763
111
214

X454102
22
914
163
406
1148
8
154
1351
2111
1
752
1462
15845
821
1274
16
516
4652
1259
441
284
564
642
76
254
0

X454108
21
1014
170
369
1219
3
171
1517
4917
0
965
1524
18788
966
1616
8
707
4618
1438
509
248
649
705
96
161
0
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Task #3: Differential Expression Analysis
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RNAseq Differential Expression ()

¢ Three widely used methods
» Limma
» EdgeR
» DESeq2

** Main differences are in normalization approaches
» Limma: Adapted to support RNAseq after “voom” transformation
» DESeq and EdgeR are very similar and both assume that no genes
are differentially expressed. DESeq2 uses a "geometric"
normalisation strategy, whereas EdgeR is a weighted mean of log
ratios-based method.

XiaLab.ca

Empowering researchers through trainings, tools, and Al



Normalization methods for gene count data

» Quantile (Q)

» RPKM

» Total Count (TC)

» Upper Quantile (UQ)
» Median (Med)

» Trimmed Mean of M-values (TMM)
O EdgeR default

» Relative log expression (RLE)
O DESeq default

XiaLab.ca
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Comparison of different normalizations (l)

Within group variance (the smaller the better)

14 — L L I —
I
1
1.2 — 1
)
€10
&
g
2 08 —
o
&06 -
L
b
[ —
o 04 4 — I
(&)
02 — ;
1
00 -~ R —_ I o
[ I I I I I I 1
TC uQ Med DESeq ™M Q RPKM RawCount

http://www.ncbi.nlm.nih.gov/pubmed/22988256
XiaLab.ca

Empowering researchers through trainings, tools, and Al



Comparison of different normalizations (ll)

Variance of house keeping genes (the smaller the better)

0.205 0.210
| I

0.200

Average coefficient of variance

0.195

I I I I I I I I
TC uQ Med DESeq T™M Q RPKM  RawCount

http://www.ncbi.nlm.nih.gov/pubmed/22988256
XiaLab.ca
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Comparison of different normalizations (lll)

False discovery rate (the smaller the better)

0.20
I

False-positive rate
010
|

T — T T T T 1
TC ua Mad DESey TMM Q RPKM RawCount

0.00
L

http://www.ncbi.nlm.nih.gov/pubmed/22988256
XiaLab.ca
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EdgeR, Limma (voom) and DESeq2

(a) Equal library sizes
400

@ false positives
O true positives

300 +

Number of genes with FDR < 0.1

200+
100
OJE o g g
’OU‘J;_EU'
S 55 22°¢ p b
S & & L @ r w > €
s © 550853
E « cCc D o
£ B 3 3 8
E B
XiaLab.ca
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DSS
TSPM

(b) Unequal library sizes

@ false positives
O true positives

voom

limma trend

limma notrend

t-test

edgeR classic

edgeR glm

» EdgeR is more liberal (more
DEGs)

» DESeq2 is computationally
intensive and should only be
used for small sample size
(less than 50)

» Limma-voom is generally

g (g g 3z plreferred for large sample
d6gg F size
S

http://www.ncbi.nlm.nih.gov/pubmed/24485249



Task #4: Functional Analysis
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Three key components

Agorthm

' XiaLab.ca
-. Empowering researchers through trainings, tools, and Al
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Issues with ORA approach

1.  The input list is subject to some arbitrary cutoff

o Different cutoff values can lead to different results :E/IRR'E)?
2. The “background universe” (all measurable or:
features by the platform) may not be well ® RRP4Z

defined

o  Allthose genes in the user uploaded data?
o  Allthose defined in the functional library?

3. Selection bias: all balls in the container should

have equal chance of being selected) issue
o Every gene has equal chance being sequenced by
NGS?

XiaLab.ca
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Gene Set Enrichment Analysis

> Cut-off free method
> Using the whole ranked gene list (not
just those that are significant)
o Are any gene sets (pathways) ranked
surprisingly high or low?
o Using permutation to evaluate
whether this is surprise or not
» Claimed to be able to detect “subtle

but consistent” changes

XiaLab.ca

Empowering researchers through trainings, tools, and Al

.

Molecular Profile Data

Gene Set Database

Enriched Sets

Tarkhwmsl ph, SOITICHE DM TUATIO. GINTS.




GSEA (Part I) — Enrichment Score (summary stat)

A Phenotype B Leading edge subset
Classes /\‘ Gene set S
ol (D
D Gene set S o 10
—_— Correlation with Phenotype U
B B L_ 5 9 0
=i ﬂ i
[0} S -0.5
q:,)" 1.0
O L e N I Random Walk .
ol .
S ES(S)I 20
C i Steps
Maximum deviation ~Gene List Rank N
from zero provides the
enrichment score ES(S)

» GSEA walks down the ranked list of genes, increasing a running-sum statistic when a
gene belongs to the set and decreasing it when the gene does not.

» The enrichment score (ES) is the maximum deviation from zero encountered during
that walk. The ES reflects the degree to which the genes in a gene set are
overrepresented at the top or bottom of the entire ranked list of genes.

XiaLab.ca
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GSEA - Part lI: Permutation Test

1. Randomise data (groups), rank genes again and repeat test 1000

times
2. Null distribution of 1000 ES for gene set
3. FDR g-value computed — corrected for gene set size and testing

multiple gene sets

Null distribution of
enrichment scores

T Actual ES
XiaLab.ca
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Molecular Signature Database (MSigDB)

e A companion database with GSEA
software tool
e MSigDB offers gene sets based on
various groupings
o Pathways
o GO terms
o Chromosomal position

)

XiaLab.ca
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Molecular Signatures Database

Human Collections

hallmark gene sets are coherently ontology gene sets consist of genes
H expressed signatures derived by aggregating c5 annotated by the same ontology term.

many MSigDB gene sets to represent well-

defined biological states or processes.

positional gene sets corresponding to

oncogenic signature gene sets defined
C 1 human chromosome cytogenetic bands.

C6 directly from microarray gene expression
data from cancer gene perturbations.

curated gene sets from online pathway immunologic signature gene
C databases, publications in PubMed, and C7 sets represent cell states and perturbations
knowledge of domain experts. within the immune system.

regulatory target gene sets based on cell type signature gene sets curated

C gene target predictions for microRNA seed C8 from cluster markers identified in single-cell
sequences and predicted transcription factor sequencing studies of human tissue.
binding sites.

computational gene sets defined by
C4 mining large collections of cancer-oriented
expression data.

http://www.broadinstitute.org/gsea/msigdb
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Issues with pathways or gene sets

> Many functions (pathways, gene sets) share some key genes
> Pathway boundaries are “fluid”

> Similar pathways are often of different sizes in different pathway

databases

» KEGG

» Reactome
» BioCyc

» SMPDB

XiaLab.ca
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Enrichment network to visualize shared drivers

< Pathways overlap on
the network

< Showing the key
driver genes

< Similar pathways
will be close to each
other (pulled by
same genes)

XiaLab.ca
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Global network to visualize converged functions

C21-steroid hormone bios 182 57
Androgen and estrogen bic 103 23

Vitamin A (retinol) metabc 43 10
D Limonene and pinene degi 16

(] D4&E4-neuroprostanes fo 9

Pathways will e e
converge on the g Togw 0 e ;‘
1 ! |

|

+ =[] Polyunsaturated fatty acid 2
L4 IR De novo fatty acid biosynt 33

Qg Fatty acid activation 33

D ‘Vitamin B12 (cyanocobal: 4

R . T S A

b b ot 2 Prostaglandin formation fi 77
global network to !,'f;'%?sa?g:l s =t <
reveal common : Ve
themes | Rt i

Omega-6 fatty acid metabi 6

o 0]
)

XiaLab.ca
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Schedule for today

Time

Topics

9:00-9:10 Introduction

9:10-10:10

‘ 10:15-11:25

Summary and discussion

XiaLab.ca

Empowering researchers through trainings, tools, and Al
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@ Home O Tutorials ® Forum {% ExpressAnalystR = Updates 2, Account v

Gene expression data analysis using

ExpressAnalyst

ExpressAnalyst

Comprehensive analysis and meta-analysis of gene expression data

XiaLab.ca
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You are encouraged to follow the demo

Community version:
e https://www.expressanalyst.ca
e https://new.expressanalyst.ca

Pro version:
e https://pro.expressanalyst.ca
* You will be automatically assigned to one of the nodes

XiaLab.ca
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https://www.expressanalyst.ca/
https://new.expressanalyst.ca/
https://pro.expressanalyst.ca/

ExpressAnalyst

nature communications

Article https://doi.org/10.1038/s41467-023-38785-y

ExpressAnalyst: A unified platform for RNA-
sequencing analysis in non-model species

Received: 20 October 2022
Raw Data Processing Statistical & Functional Analysis

Accepted: 16 May 2023
Published online: 24 May 2023

B o
® | Check for updates B e

H

o

FASTQ files Alist of gene IDs Asingle expression table

Start Here Start Here Start Here

XiaLab.ca

Empowering researchers through trainings, tools, and Al

Multiple expression tables

Start Here

EcoOmicsDB

Seq2Fun IDs

Start Here
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ExpressAnalyst

e RNAseq read mapping and
guantification
> Kallisto (model species)
> Seqg2Fun (non-model species)
e Differential gene expression
analysis
> Limma
> edgeR
> DEseq2
> Sample size below 100

XiaLab.ca

Empowering researchers through trainings, tools, and Al

Visual analytics

> Volcano Plots

> Heatmaps clustering

> Ridgeline plots

> Enrichment Networks

> Upset Diagram (meta-analysis)
Integrated with enrichment analysis

> ORA

> GSEA



Our Tasks & CURRENT
&= PROTOCOLS

PROTOCOL @& OpenAccess () @

Using ExpressAnalyst for Comprehensive Gene Expression
Analysis in Model and Non-Model Organisms

Jessica Ewald, Guangyan Zhou, Yao Lu, Jianguo Xia }24

First published: 06 November 2023 | https://doi.org/10.1002/cpz1.922

Basic Protocol 1: RNA-seq count table uploading, processing, and normalization

Basic Protocol 2: Differential expression analysis with linear models

e Basic Protocol 3: Functional analysis with volcano plot, enrichment network, and
ridgeline visualization

e Basic Protocol 4: Hierarchical clustering analysis of transcriptomics data using
interactive heatmaps

e Basic Protocol 9: Functional analysis of transcriptomics signatures

XiaLab.ca
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Demo Overview

e Dataset: RNA-seq data collected from mouse liver to study the effect of
Bisphenol-A exposure during pregnancy on offspring.

o 16 samples
o 8 male and 8 female offsprings
e Obijectives:
o Format data and metadata file for ExpressAnalyst

o Data processing
m  Quality check
m Filtering and normalization
o Differential expression analysis

o Functional analysis
e Pro features:

o Project saving
o Report generation

XiaLab.ca
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Data format

.CSv or .txt format

(

e Samples in columns.

e (Genes inrows.

e Important that first row
starts with #NAME
followed by sample
names

XiaLab.ca
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O (0N [B (W (N (=

10
11
12

#NAME
Plekhg2
Plekhg3
Plekhgl
Plekhgb
4930592103Rik
Plekhg4
Plekhg5

Nsa2

Nampt

Vmol

Man2al
F930015N05Rik
4931406P 16Rik
Vi

Mir302d

Mierl

Mier2

Mier3

Agpll

Aqgpl2
1810010H24Rik
Rpl31-ps12
Dagl

Myadm
Gm15008
Sacs

Zfp712

Zfp710

Zfp711

Zfp715

B C D E F G H | J K L
BPASF1 BPA1F1 BPA4F2 BPA4F3 CONI12F1 CON12F2 CON8F1 CON9F2 BPA4M2 BPASM1 BPA1M2
109 174 80 76 83 88 52 76 99 76 76
1281 1227 1263 990 546 687 561 661 866 799 895
485 462 467 562 347 296 458 487 261 349 338
126 172 206 198 137 164 110 152 247 193 223
7 5 9 7 2 7 0 7 4 3 9
0 0 0 0 0 0 0 0 0 0 0
117 150 138 95 83 109 105 91 77 120 78
1540 1472 1577 1792 1419 1580 1288 1670 1171 1260 1275
2882 3103 3487 3090 2400 3148 2343 2569 2242 3137 2349
43 68 51 62 24 30 22 26 30 54 51
11979 13268 15988 14592 7416 9708 7285 10071 11742 13363 12304
15 17 17 17 2 9 18 9 14 5 11
955 1038 971 934 514 810 559 874 526 572 708
289 329 362 284 208 211 170 181 151 246 244
0 0 0 0 0 0 0 0 0 0 0
1262 1667 1510 1597 534 1086 558 1135 976 1084 1154
152 245 184 166 114 141 104 126 180 142 180
949 1066 1220 1214 780 1177 808 1179 829 937 834
361 357 420 431 184 307 238 247 343 439 384
0 0 0 0 0 0 0 0 0 0 0
71 74 92 87 97 135 89 132 68 105 74
239 223 216 238 75 119 85 112 151 161 193
589 3324 3078 743 659 841 984 728 1910 2736 3035
585 562 600 734 525 727 432 641 485 477 341
0 0 0 0 0 0 0 0 0 0 0
26 22 24 28 11 16 17 23 12 17 14
82 79 77 89 71 80 71 55 33 60 54
447 531 451 448 329 393 405 298 328 397 432
0 2 0 0 0 0 0 0 0 2 0
539 653 632 624 377 495 357 520 328 432 472
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Metadata file

e .CSV or .txt
e Samples in rows
o Make sure sample
names match with the
ones in data file.
e Metadata variables in
columns
e Important that first row
starts with #NAME followed
by metadata group name

XiaLab.ca
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OO NO DL (WIN |-

A
#NAME
BPASF1
BPA1F1
BPA4F2
BPA4F3
CON12F1
CON12F2
CONSF1
CONSF2
BPA4M2
BPASM1
BPA1IM2
BPAIM3
CON11M2
CONSM1
CON8M2
CON9M2

B C
Treatment Sex
BPA Female
BPA Female
BPA Female
BPA Female
Control Female
Control Female
Control Female
Control Female
BPA Male
BPA Male
BPA Male
BPA Male
Control Male
Control Male
Control Male
Control Male

D E F G
liver TG |liver_TC |liver UC |liver PC
77.5 2.82 2.35 15.26
77.5 2.82 2.35 15.26
81.65 3.22 2.47 14.85
98.92 3.24 2.27 16.38
180.19 3.45 2.68 18.4
134 3 2.4 15.6
137.74 3.55 2.71 18.78
160.54 3.27 2.72 15.51
88.97 2.74 2.28 15.29
63.03 291 2.42 16.24
99.23 2.77 231 14.77
123.62 3.84 3.2 24.72
84.46 2.29 211 14.6
73.19 212 1.93 12.71
91.94 2.83 2.36 16.27
110.68 2.72 214 15.15
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Next Lecture

1. Network analysis from a gene list
» PPl network
» Tissue-specific, signaling networks

2. Meta-analysis
3. RNAseq in non-model species

XiaLab.ca
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We would like to hear your
comments & feedback

contact@xialab.ca

See you next week!
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