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MetaboAnalyst

ExpressAnalyst

MicrobiomeAnalyst

OmicsNet OmicsAnalyst

Raw data  statistics  networks  functions

LC-MS spectra

Bulk RNA-seq

Microbiome

miRNet

NetworkAnalyst



Our Resources 

Recordings & slides
 https://www.xialab.ca under 

the “Training” tab within 3 

days after lecture

 Faster with Firefox

Community tool: 
 https://www.####.ca

Pro Tools:
 https://pro.####.ca

 You will be assigned to 

one of the cloud nodes 
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https://www.xialab.ca/


About the “pro” tools
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1. Dedicated computing
2. Live report & project 

management
3. More stable
4. Prioritized support

Community version

~ 5000 users / day

~ 100s concurrent users

A total of six tools have their “pro” versions
○ https://pro.metaboanalyst.ca

○ https://pro.microbiomeanalyst.ca

○ https://pro.expressanalyst.ca

○ https://pro.omicsnet.ca

○ https://pro.omicsanalyst.ca

○ https://pro.mirnet.ca

https://pro.metaboanalyst.ca/
https://pro.microbiomeanalyst.ca/
https://pro.expressanalyst.ca/
https://pro.omicsnet.ca/
https://pro.omicsanalyst.ca/
https://pro.mirnet.ca/


Our Syllabus
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Topic Date Lecture Lab

Omics Data Science 

Foundations

Jan. 6 Omics data processing, statistics and visualization --

Jan. 13 From raw data to functional insights --

Transcriptomics Jan. 20 Gene expression data analysis (part I) ExpressAnalyst & NetworkAnalyst

Jan. 27 Gene expression data analysis (part II) ExpressAnalyst & Seq2Fun

Proteomics, Networks, & 

Biomarkers

Feb. 3 Biological network analysis & gene regulatory networks NetworkAnalyst & miRNet

Feb. 10 Proteomics & biomarker analysis ExpressAnalyst & MetaboAnalyst

Metabolomics Feb. 17 Targeted metabolomics data analysis MetaboAnalyst

Feb. 24 LC-MS untargeted metabolomics data analysis MetaboAnalyst

Microbiomics Mar. 2 Marker gene data analysis MicrobiomeAnalyst

Mar. 9 Shotgun metagenomics data analysis MicrobiomeAnalyst

Multi-omics Mar. 16 Knowledge-driven multi-omics integration OmicsNet

Mar. 23 Data-driven multi-omics integration OmicsAnalyst



Schedule for today
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Time Topics

9:00 – 9:10 General introduction & recap

9:10 – 9:40 Proteomics data analysis workflow

9:45 – 10.15 Live demo & hands on

10:20 – 10:50 Biomarker analysis

10:55 – 11:25 Live demo & hands on 

Summary and discussion



Proteomics & proteoform

 Proteomics: study the entire set of proteins produced by a cell

 Include functional, structural and quantitative proteomics

 A proteoform is defined by its exact amino acid sequence combined with 

any post translational modifications. 
o Each “protein” arising from a gene may exist in numerous different proteoforms.

 Technological platform is similar to metabolomics 

 LC-MS based shotgun proteomics

 Statistical & functional analysis are similar to transcriptomics (proteins 

genes)
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Protein & their proteoforms
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https://www.nature.com/articles/nchembio.2576

It is estimated to 

have at least ∼6 

million proteoforms

(2016)



Three types of proteomics research

1. Structural proteomics (protein 3D structures)

2. Functional proteomics (large-scale PPI studies)

 Yeast two-hybrid screening (Y2H)

 Affinity purification coupled to mass spectrometry.

3. Quantitative proteomics (abundance & biomarkers)

 Gel-based proteomics

 Protein microarrays

 MS-based proteomics (shotgun proteomics)
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Structural Proteomics 
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AlphaFold



Structural Proteomics (II) - a “solved” problem?
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 predict the impact of single mutations on protein stability

 AlphaFold was trained on 

protein chains in the PDB. 

 Can make a strong 

prediction based on a 

multiple sequence alignment 

alone.
 Templates are not a critical 

input to make an accurate 

prediction

 Can ignore templates if 

they appear unhelpful



Functional proteomics – PPI 
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http://www.interactome-atlas.org/



Quantitative proteomics based on gels

1) Separating proteins 

according to their 

isoelectric point (pI) and 

molecular weight (MW)

2) Comparison of the spot 

sizes reveals differences 

in the protein amount 

3) MS identifies the proteins 

with significant changes
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Imaging-based analysis

1. Load the gel image

2. Lay the grid

3. Annotate the spots

4. Compare with 
database/archived gel 
images

5. …..
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Protein microarrays (I)

 Immobilize probes on protein 
chip 
 Antibodies

 Aptamers

 Affibodies

 Targeted proteins can be 
detected either by direct 
labeling or using a reporter 
antibody in sandwich assay 
format
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https://doi.org/10.2144/06404TE01

https://doi.org/10.2144/06404TE01


Protein microarrays (II) – many challenges
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DOI: 10.1021/ja8030278

Production of reliable, consistent, 

high-throughput proteins that are 

correctly folded & functional are very 

challenging
o Require a lot more steps in its creation 

than does a DNA chip

o Different surface chemistries

o Requiring long time in storage

o Reducing non-specific binding by the 

capture agents

o Complete representation of the 

proteome



MS-based quantitative proteomics

 Bottom-up:
o Shotgun proteomics

o The protein samples are 

first proteolytically 

digested into peptides 

before analyzing in MS

 Top-down:
o Intact proteins are directly 

analyzed by MS
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https://www.technologynetworks.com/proteomics/articles/a-fusion-of-proteomic-practices-the-
indisputable-complementarity-of-bottom-up-and-top-down-337094



Latest breakthrough in MS-based proteomics
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General bioinformatics workflow

1. Data preprocessing
 Protein ID & 

quantification 

2. Data processing & 

normalization

3. Statistical analysis

4. Functional analysis
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7216093/

#1 and #2 are unique to 

omics technology. #3 and 

#4 are common



Data Pre-processing
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MS-based protein identification

 Searching against the fragmentation spectra 

databases

o A target database is established from in silico 

digestion of all expressed or hypothetical protein 

sequences. Then a peptide spectrum match score 

is calculated for each fragmentation spectra and 

all theoretical fragmentation spectra information 

from the target database.

 Mascot, SEQUEST, etc

 de novo peptide sequencing

o The peptide sequence is determined from 

fragmentation spectra information and 

fragmentation method

 DeepNovo-DIA
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https://www.matrixscience.com/



MS-based protein quantification

1. Labeling methods 
o Using isobaric stable isotope labeled 

chemical tags 

• Have identical mass, vary in terms of distribution of 

heavy isotopes in their structure

• Distribution of the Isotope patterns allowing the 

relative quantifications

• Mix samples (multiplexing) 

2. Label-free methods 
o Different samples are acquired from separate 

LC-MS/MS experiments

o Quantification based on the peak area (or ion 

intensity in LC-MS) or spectral counting 

(MS2)
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883989/



MaxQuant for protein quantification 
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 Supporting both label-based and label-free methods



Data Processing & Normalization
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QC => Missing Values => Data Filtering 
=> Data Normalization



Understanding QC plots in ExpressAnalyst
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PCA

Density plot

Box plot

Mean-variance plot



QC based on mean-variance plot

 Showing a decreasing trend between 

the means and variances resulting 

from a combination of technical 

variation in the sequencing 

experiment and biological variation 

amongst replicates. 

o Experiments with high biological 

variation usually result in flatter 

trends, where variance values plateau 

at high expression values. 

o Experiments with low biological 

variation tend to result in sharp 

decreasing trends.
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Ordered by increasing levels of biological 

variation in datasets

https://pubmed.ncbi.nlm.nih.gov/24485249/



Mean-variance (MA) plot for filtering

 Visual check on the level of filtering 

performed upstream. 

 If filtering of lowly-expressed genes is 

insufficient, a drop in variance levels can be 

observed at the low end of the expression 

scale due to very small counts. 

 If this is observed, return to the earlier 

filtering step and increase the expression 

threshold applied to the dataset.
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Dealing with missing data

● Missing at random: missingness 

can be fully accounted for by 

variables where there is complete 

information

○ Predictable using other features of 

the data

● Missing not at random: where there 

is a systematic explanation

• Below detection limit in MS-based 

proteomics or metabolomics.
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Variance stabilization normalization (VSN)

 Originally designed for microarray to 

overcome the limitations of log 

transformations by accommodating 

negative values and minimizing the inflated 

variance around low signal intensities

 Scale data from different samples into the 

same level through parametric 

transformations and maximum likelihood 

estimation

 Eliminate the dependency between 

variances and mean abundances
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MS-based proteomics data normalization
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Variance among house keeping genes 

(smaller => better)

https://pubmed.ncbi.nlm.nih.gov/27694351/



MS-based proteomics data normalization
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Pearson correlation coefficients among house 

keeping genes (higher => better)

https://pubmed.ncbi.nlm.nih.gov/27694351/



Enrichment analysis
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Three components in enrichment analysis

1. Input: define the signals of interest
 Significant features 

 Complete ranked list 

 A data table 

2. Define functions libraries: 
 Pathways, gene sets

3. Perform enrichment tests evaluate 

the coordinated changes of a 

group. 
 Over-representation analysis (ORA) 

 Permutation based approaches

33

Library

Algorithm

Input



Enrichment Tests 

We need to calculate the null 

distribution - how often we can 

see this by random chance? 

● Model driven 
○ Hypergeometric distribution

● Data driven 
○ Don’t know - we can use 

permutation to get this

34

Over-representation analysis (ORA)



Potential sources of bias with ORA

ORA assumption: all genes/proteins can be measured with equal 

reliability or opportunity. However, the realities are: 

1. Technological bias

o Platform (MS or microarray) capture a limited subset of “gene/protein 

universe” 

2. Biological bias

o A given cell type or tissue have specialized proteome / transcriptome  

3. Sampling bias

o Could be introduced during sample prep (selectively enrich some groups)
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Addressing bias (I) – providing background

 Better define the “background universe” reflecting the technical 

and biological context of the current study

o This information is provided in data table upload 

o i.e. all genes / proteins measured are already present in the raw 

abundance table)

o For gene/protein list upload, you can optionally upload the 

complete list 
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Addressing bias (II) – using permutations

To estimate null distribution from the 

current data
● Transcriptomics / proteomics

○ GSEA

● miRNA-omics
○ Unbiased sampling (introduced in the 

previous lecture)

● Metabolomics
○ Mummichog 

■ will be introduced in the next session
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Learning more on computational proteomics

 Computational Mass Spectrometry @ Pacific Northwest National Laboratory
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https://pnnl-comp-mass-spec.github.io/proteomics-data-analysis-tutorial/index.html

https://pnnl-comp-mass-spec.github.io/proteomics-data-analysis-tutorial/index.html


Live Demo & Hands On
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Proteomics vs RNA-seq data

● Proteomics data:
○ LC-MS
○ Intensity based, has decimal values.
○ Lower coverage (a subset of whole proteome)
○ Often have missing values

● RNA-seq data
○ High-throughput sequencing
○ Count based, integer

■ In some cases, can be decimal in the case of fractional counts (depending of the 
algorithm used)

○ Capture most genes
○ Do not have missing values

40



Example dataset

41



Example dataset
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#NAME D034 D057 D086 D099 D118 D125 D146 D197 D023 D024

#CLASS:

Diagnosis T2D T2D ND T2D T2D ND ND T2D ND ND

CRYAB 12.08658823 12.64878448 12.28710506 NA 13.29318423 12.50848808 13.41511448 13.54087129 NA 11.80891996

HDLBP 16.00951903 15.85587266 16.31787505 15.38619931 15.61725193 15.78135854 15.8326181 15.08939838 16.26661951 15.76832481

EHD1 11.82545124 13.4000789 12.83612759 13.29662656 12.53035756 12.64786312 13.16280041 12.98266615 13.14742926 12.90561264

SERPINA1 NA NA 14.35252462 NA 13.36863623 13.27338767 NA NA 14.01216748 12.25590661

Proteomics data often have missing data (LC-MS）.

In RNA-seq, they would be simply 0 count.



Missing value imputation
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Missing value imputation: assumptions

● Missing due to the abundance level is lower than detection 

limit:
○ Replace by 1/5 of the lowest value for that variable --> default 

option in ExpressAnalyst

● Missing due to technical or human error:
○ Replace by mean/median

44



Schedule for today

45

Time Topics

9:00 – 9:10 General introduction & recap

9:10 – 9:40 Proteomics data analysis workflow

9:45 – 10.15 ExpressAnalyst live demo & hands on

10:20 – 10:50 Biomarker analysis

10:55 – 11:25 MetaboAnalyst live demo & hands on 

Summary and discussion



What are Biomarkers

A characteristic that is objectively measured and evaluated as an indicator of 

normal biological processes, pathogenic processes or pharmacological 

responses to a therapeutic indication.

.



Key components in biomarker analysis

 The main activities in biomarker analysis 

involve selecting biomarkers and tuning 

parameters based on a few well-

established classification algorithms.

 Evaluating performance of biomarker 

models is based on their capacities to 

classify new samples using cross 

validation (CV). 

 Permutation tests are often used to 

evaluate whether a classifier has 

learned anything better than random 

guessing (null model).

47

Biomarker 
Model

Biomarkers

Algorithm

Parameters



Overview of biomarker analysis 

1. Biomarker selection

 Identification of an optimal subset of features that will provide the 

maximal discriminating power between the diseased and healthy 

samples

2. Performance evaluation 

 Assessment & validation of the panel of biomarkers

3. Model creation

 Developing a fixed mathematical equation or computer algorithm, 

which combines the panel of selected biomarkers into a single test 

score with the aim of accurately predicting a particular clinical outcome,

48



Measuring biomarkers

We look for biomarkers that 
 Can be measured earlier

 Can be measured more easily or frequently 

 Can be measured with higher precision, or less subjective

49

Metabolite 

Concentration

Gene 

Expression

Genetic 

Variation



Desirable properties of biomarkers

● Objectively measurable
○ Can be reliably measured

○ By different platforms or 

technologies

○ Clear identifications

○ Absolute quantification

○ Interpretable? 

● High sensitivity, high  

specificity

50

Convenient & accurate



Balanced data (control group and disease group ~same size)
 Accuracy

o 9/13 correct => 69% accuracy

 Error rate 

o 1 – accuracy => 31%

Not suitable for imbalanced data 
 In a population, cancer incidence is low: ~5 cases in 1000 people. If a 

classifier predict all people to be healthy, then it is 99.5% accurate (majority 

vote)

o Need to develop other measurements

Evaluating Performances 



Evaluating Biomarker Performance

 Performance evaluation in 

clinical diagnosis (usually very 

unbalanced i.e., few case, most 

normal) 

 True positives (TP)

 True negatives (TN)

 False positives (FP) 

 False negatives (FN) 
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Evaluating Biomarkers - Sensitivity & Specificity

 Sensitivity: true positive rate

o Sn = TP / (TP + FN)

o The probability of a positive test result given 

that a subject has an actual positive outcome

 Specificity: true negative rate 

o Sp = TN/(TN + FP)

o The probability of a negative test result given 

that a subject has an actual negative outcome

53

FP

FN

TN

TP

Negative Positive



Another illustration
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Receiver Operating Characteristic (ROC) curves

 A historic name from radar studies

 Very popular in biomedical 

applications 

o To assess biomarker performance.

o To compare different biomarker 

models

 A graphical plot of the true positive 

rate (TPR) vs. false positive rate 

(FPR), for a binary classifier (i.e. 

positive/negative) as its cutoff point 

is varied
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Sensitivity, Specificity & ROC curve 

Two important performance measures in a diagnostic tests 
 Sensitivity (true positive rate)

 Specificity (true negative rate)

Cutoff dependent 
 Increase cutoff, will improve specificity, decease sensitivity

ROC curves integrate these two measures 
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Area under an ROC curve (AUC)

 Overall measure of a test 
performance

 AUC is the probability that a 
classifier will rank a randomly 
chosen positive case higher than 
a randomly chosen negative one

 Comparisons between two tests 
based on differences between 
(estimated) AUCs

57



From Biomarkers to ROC curves
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How to construct ROC curves

Input: a score on a univariate scale
 A test gives continuous value (i.e. blood Glucose level)
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TA Lasko, et al (2005)



Straightforward for a single biomarker

Abundance values can be used directly 
to predict Positive/Negative

60

Move the cut-off 

(red line)



How to deal with multiple biomarkers?

● Input: a score on a univariate scale
 A classifier that produces a continuous score (i.e. likelihood, 

probabilities)  
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Single Biomarker

Continuous Values
 Concentrations
 Combined scores
 Probabilities …

TP
R

0
%

100
%

FPR0
%

100
%

Statistics Methods
(linear/logistic regression) 

Multiple Biomarkers



Omics data is usually of small sample size with large number of variables 

(n << p) 

 SNPs (~ 1,000,000s)

 Gene expressions (~10,000s)

 Compound  concentrations ( ~ 1000s)

 Linear/logistic regression will not work ( n > p)

Need new strategies 

 Computationally efficient;

 Not susceptible to over-fitting; 

 Advanced machine learning approaches 
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The challenges of Omics Data



Dealing with omics data
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Single Biomarker

Continuous Values
 Concentrations
 Combined scores
 Probabilities …

TP
R

0
%

100
%

FPR0
%

100
%

Statistics Methods
(linear/logistic regression) 

Multiple Biomarkers

Omics Data

Biomarker selection

Predictive Models



Overfitting issue 

 Fitted model performs well for the current data

 Fitted model is not good for prediction of new data – prediction error 
is underestimated

 Model is too elaborate, models “noise” that will not be the same for 
new data



Addressing overfitting issue

 Cross validation – whether the 

model can predict on new events
o Prediction accuracy 

o Sum of squares captured by the model (R2) 

o Cross-validated R2 (also known as Q2) 

 Permutation tests – whether the 

model captures real signals 

compared to null 

65

Train Test

Dataset



Over-fitting in classical univariate ROC curve
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AUC Classical approach: 0.726 AUC CV-based: 0.673

Classical univariate based on all data points 

(no separation of training & testing) 



Permutation Tests

To test whether your model is significantly 

different from the null models

1. Randomly shuffle the class labels (y) and build 

the (null) model between new y and x;

2. Test whether there is still the similar 

performance;

3. We can compute empirical p values

o If the result is similar as the permuted results (i.e. 

null model), then we can not say y and x is 

significantly correlated



Permutations
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To test whether your model is significantly 

different from the null models

1. Randomly shuffle the class labels (y) and build 

the (null) model between new y and x;

2. Test whether there is still the similar 

performance;

3. We can compute empirical p values

o If the result is similar as the permuted results (i.e. 

null model), then we can not say y and x is 

significantly correlated



Model instability (variance)

 Multiple biomarker models will be 

created during cross validation-based 

subset of datasets

 Each model will use the same 

algorithm, but “slightly” different 

ingredients

� Biomarkers

� Parameters

 More severe when sample size are 

small 
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Biomarker selection & model creation

 Support vector machine (SVM);

 Random forests;

 Partial least squares;

Balanced repeated random sampling & cross validation 

ROC curves are generated by Monte-Carlo cross validation (MCCV) using balanced sub-

sampling. In each MCCV, two thirds (2/3) of the samples are used to evaluate the feature 

importance. The top 2, 3, 5, 10 ...100 (max) important features are then used to build 

classification models which is validated on the 1/3 the samples that were left out. The 

procedure were repeated multiple times to calculate the performance and confidence 

interval of each model. 

o Smooth ROC curve

o Confidence intervals

o Imbalanced samples

70

Biomarker Module in MetaboAnalyst



Manual or automatic biomarker selection
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AUC = 87%

Manual selected biomarkers 

AUC = 97%

Biomarkers selected by SVM 



Predicting new samples with current model

AUC = 1 Accuracy = 7/8 
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Final Remark

Omics data is usually used for the first-round screening for 

potential biomarkers 
 Need independent validation

Biomarkers are not necessarily mechanistically related to the 

underlying disease
 Association ≠ causality
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Live Demo & Hands On
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Biomarker Module
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Dataset Format
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Dataset format
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If you would like to predict 

new samples, leave their 

class label empty



Dataset Format
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Samples can be either in rows or columns, 
first row/column is samples, second 

row/column should be metadata group.
Only one metadata group is supported.MetadataSamples

Samples without
metadata labels for
prediction



Our Syllabus
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Topic Date Lecture Lab

Omics Data Science 

Foundations

Jan. 6 Omics data processing, statistics and visualization --

Jan. 13 From raw data to functional insights --

Transcriptomics Jan. 20 Gene expression data analysis (part I) ExpressAnalyst & NetworkAnalyst

Jan. 27 Gene expression data analysis (part II) ExpressAnalyst & Seq2Fun

Proteomics & Biological 

Networks

Feb. 3 Biological network analysis & gene regulatory networks NetworkAnalyst & miRNet

Feb. 10 Proteomics & biomarker analysis ExpressAnalyst & MetaboAnalyst

Metabolomics Feb. 17 Targeted metabolomics data analysis MetaboAnalyst

Feb. 24 LC-MS untargeted metabolomics data analysis MetaboAnalyst

Microbiomics Mar. 2 Marker gene data analysis MicrobiomeAnalyst

Mar. 9 Shotgun metagenomics data analysis MicrobiomeAnalyst

Multi-omics Mar. 16 Knowledge-driven multi-omics integration OmicsNet

Mar. 23 Data-driven multi-omics integration OmicsAnalyst



Tutorials
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https://www.dropbox.com/s/pm6t6w2qo8q1z95/CPIB_MetaboAnalyst4.pdf?dl=0
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We would like to hear your 

comment & feedback
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contact@xialab.ca

See (most of) you next week!

mailto:contact@xialab.ca

