

MetaboAnalyst 6.0

-- a unified platform for metabolomics data processing,

analysis and interpretation

Spectra Processing [LC-MS w/wo MS2]

2024-03-10

Module Overview

An auto-optimized workflow for LC-MS raw spectra pre-processing

- ✓ Support for LC-MS1 feature detection with centWave-based auto-optimized workflow;
- ✓ Support for LC-MS1 feature detection with a highly-efficient algorithm, Asari;
- ✓ Support for LC-MS2 (Data-Dependent Acquisition, DDA) data deconvolution and processing in an autooptimized approach;
- ✓ Support for LC-MS2 (sequential windowed acquisition all theoretical MS data data-independent acquisition, SWATH-DIA) data deconvolution and processing in a highly-efficient way;
- ✓ Comprehensive MS2 reference spectra libraries for compound searching;
- ✓ MS2 spectra searching supports direct searching or searching based on neutral loss. MS2 spectrum similarity can be evaluated based on dot-product or spectral entropy method.

Content

- 1. Introduction;
- **2**. Spectra Preparation;
- **3**. Choose the Module;
- □ 4. LC-MS1 Spectra Processing;
 - o 4.1 Spectra Files Upload
 - o 4.2 Integrity Check
 - o 4.3 Parameter Setting
 - o 4.4 Jos Status
 - 4.5 Result Exploration
- 5. LC-MS1 + DDA Spectra Processing;
 - o 5.1 Spectra Files Upload
 - o 5.2 Integrity Check
 - o 5.3 Parameter Setting
 - o 5.4 Jos Status
 - 5.5 Result Exploration
- 6. LC-MS1 + SWATH-DIA Spectra Processing;
 - 6.1 Spectra Files Upload
 - o 6.2 Integrity Check
 - o 6.3 SWATH window Check
 - o 6.4 Parameter Setting
 - o 6.5 Jos Status
 - 6.6 Result Exploration
- 7. Download Results.

1. Introduction

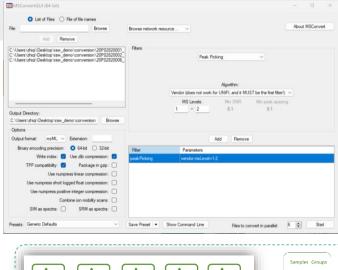
Background

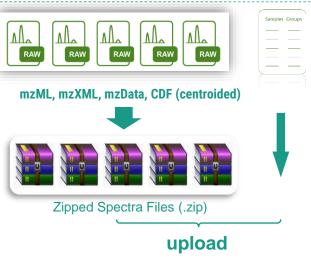
- Untargeted metabolomics data generated from LC-HRMS experiments are typically characterized by 1000s of peaks with unknown chemical identities.
- To assist with compound identification, tandem MS (called MS/MS or MS2) spectra are often collected.
- MS2 methods such as DDA and SWATH-DIA are commonly used

Data Formats

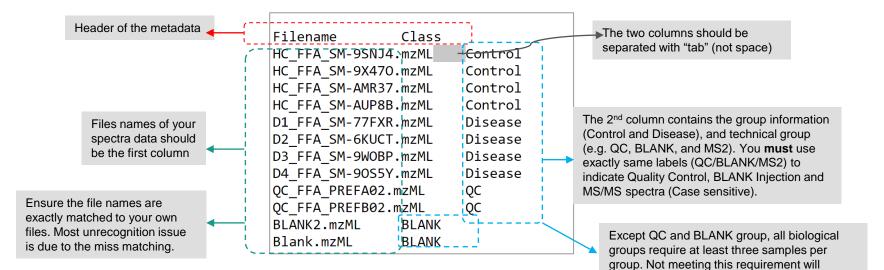
Raw spectra files must be saved in common open-source formats and uploaded individually as separate zip files. LC-MS spectra data is mandatory, while MS2 is optional. There are four opensource formats supported:

- i. mzML (recommended);
- ii. mzXML;
- iii. cdf/CDF;
- iv. mzData (phasing-out).


Expected Results


LC-MS raw spectra processing module provides user comprehensive results on LC-MS1 features and MS2-based compound identifications:

- i. Compound identifcation summary table;
- Visualization on MS2 matching pattern and annotation of fragments;


2. Spectra data preparation

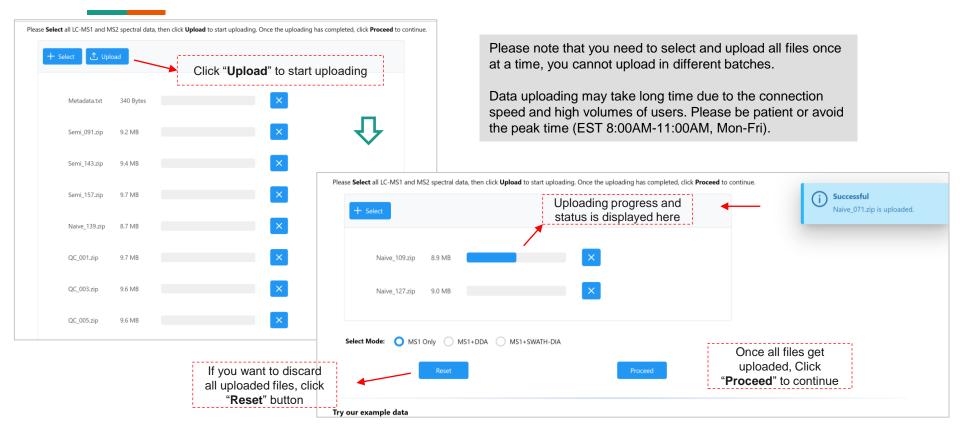
- 1. We highly recommend users to centroid MS files with **ProteoWizard**:
- For GUI: Must add 'Peak Picking' as the 1st filter (see example at the left side);
- For Command: docker run -it --rm -e WINEDEBUG=-all -v /FILE_PATH/:/data chambm/pwizskyline-i-agree-to-the-vendor-licenses wine msconvert FILENAME -o OUTPUTDIR --mzML --filter "peakPicking true 1-" --filter "zeroSamples removeExtra" --filter "msLevel 1" --64 –zlib
- All centroid MS spectra files must be zipped individually prior to uploading. Please note, users should <u>NOT</u> zip all spectra files into one single zipped file (see the left workflow);
- 3. You should include a meta-data file to indicate the grouping information of your MS spectra files, as well as the technical sample information (like MS2, QC, and BLANK) by using a simple text file. The details about how to prepare the metadata file are shown in the next page;
- 4. You must upload your spectra files together with the metadata table. You cannot upload them separately;
- 5. Metadata table is not required, but highly recommended.

2. Metadata preparation

prevent your data from uploading directly.

3. Choose the Module

Go to MetaboAnalyst (https://www.metaboanalyst.ca), and select the module



4. LC-MS1 Spectra Processing

4.1 LC-MS1 spectra upload

	Read Instructions before uploading
Image: Constraint of the constraint	ra]. zip files (same as MS1) [max: 50 spectra]. MS2 data must start with "MS2_" or marked as "MS2" I group labels <u>[example]</u>
MS2 Spectra 4. [Optional] Quality control (QC) spectra should start with "QC_" or marked as "QC" in meta data. BLA Job status Depending on our server load, spectra processing can take a long time to complete, to avoid waiting: Spectra result 1. For guest users (default), after job submission, click Create Bookmark URL and save the URL so you Download 2. For registered users, use the buttons on the left panel to manage your projects. Larger data processing Exit Please Select all LC-MS1 and MS2 spectral data, then click Upload to start uploading. Once the uploading in the Select Log in Click "Select" to choose your files to upload	i can return later to check your job status. ing and analysis support are available for <u>subscribed users</u> . has completed, click Proceed to continue. Try to use example data for testing and learning
Select Mode: MS1 Only MS1+DDA MS1+SWATH-DIA	LC-MS1 data ssing, you should ose "MS1 only" Occed Occed Malaria Data (MS1) Malaria Data (MS1) <

4.1 LC-MS1 spectra upload

4.2 Integrity Check

Data Integrity Check:

1. Spectral Format - only mzML, mzXML, mzData and netCDF formats are currently supported;

2. MS Mode - only spectra in centroid mode are supported in the online platform. Click Convert to centroid your profile data online. This conversion process will take some time, please be patient 3. If a meta data file is provided:

The first column (spectral names) must match the sample names in the meta-data file;

The second column (group labels) must contain at least two groups (not including QC), each containing ≥ 3 replicates.

Spectra	Centroid	Size (MB)	Group	Convert	Include	
Naive_007.mzML	True	15.4	Naive	⊳	\checkmark	
Naive_139.mzML	True	14.7	Naive		\checkmark	
Naive_027.mzML	True	15.0	Naive	Þ 🔫	\checkmark	lf you
Naive_071.mzML	True	15.0	Naive		\checkmark	centr
Naive_109.mzML	True	15.0	Naive		\checkmark	to co
Naive_127.mzML	True	15.0	Naive		\checkmark	10 00
Semi_025.mzML	True	15.7	Semi_immune		\checkmark	
Semi_061.mzML	True	15.6	Semi_immune		\checkmark	
Semi_143.mzML	True	15.7	Semi_immune		\checkmark	
Semi_157.mzML	True	16.0	Semi_immune		\checkmark	
Semi_091.mzML	True	15.3	Semi_immune		\checkmark	
Semi_045.mzML	True	15.6	Semi_immune		\checkmark	
QC_005.mzML	True	15.8	QC		\checkmark	
QC_001.mzML	True	16.1	QC	Þ		
QC_003.mzML	True	15.9	QC	Þ		
	«c •	< 1 → ≫ 20 ▼ Next			ection pa	ige (At least 3
				samples i	liciudea	Heriexi)

Please note that online centroid may not succeed because some open-source files may not be abled to correctly identified. Users are highly recommended to use ProteoWizard to centroid their files before uploading (see section 3. Spectra data preparation).

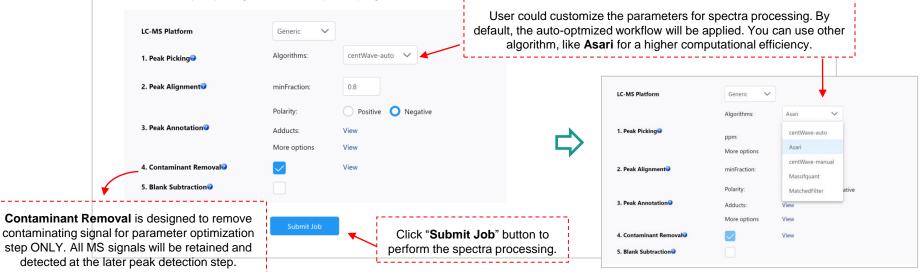
our data is not in troid mode, click ert wrench button onvert it online.

Show R Cor

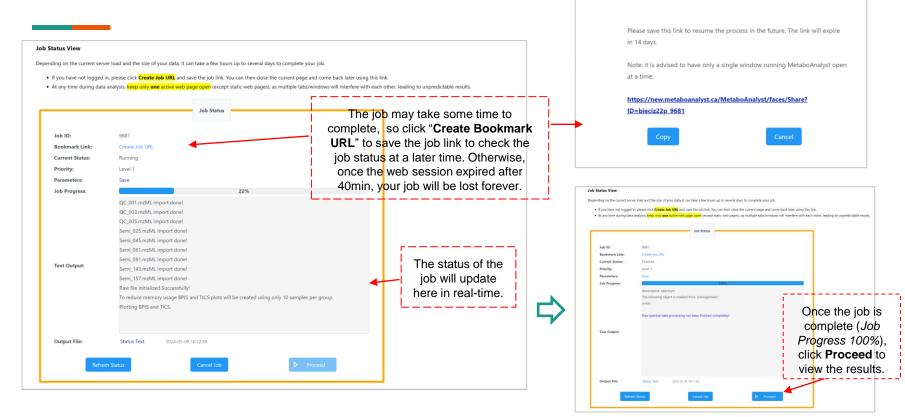
Results of the Data Integrity Check are shown here.

4.3 Parameter Setting

LC-MS/MS Spectra Processing

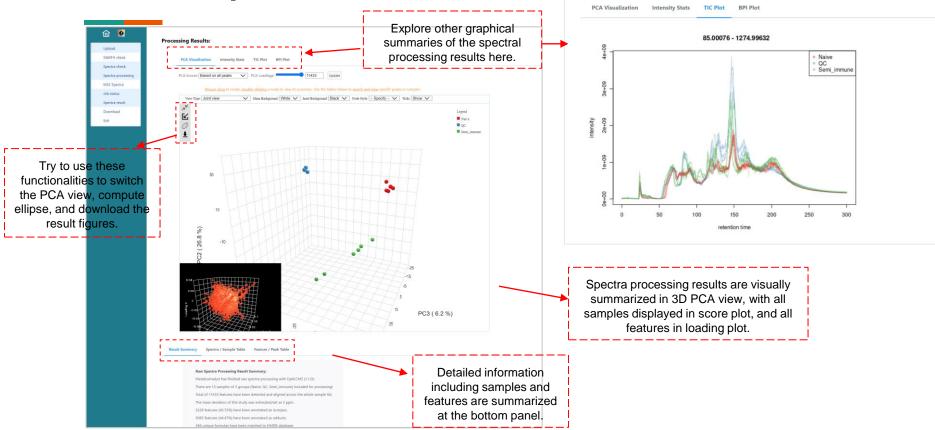

MetaboAnalyst 6.0 supports multiple algorithms for raw spectral peak picking (including centWave, Asari, MatchedFilter and Massifguant);

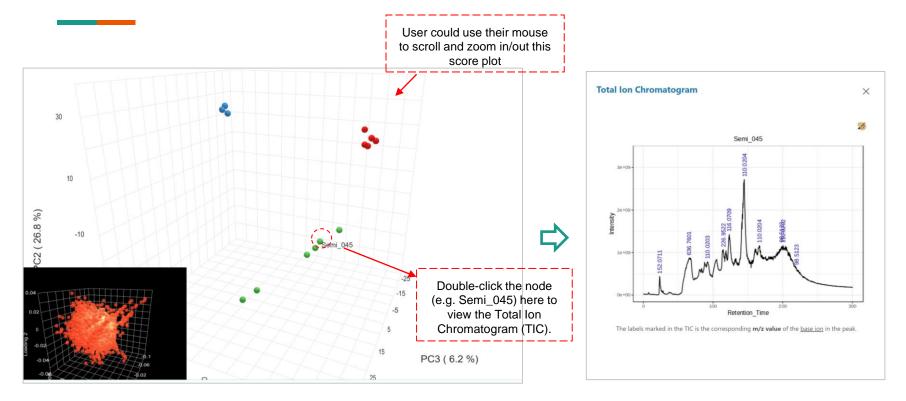
An auto-optimized workflow has been offered for centWave. The auto-optimized procedure can significantly improve both the quality of peak detection and quantification (see benchmarking results). There are two options for users to choose for centWave algorithm.

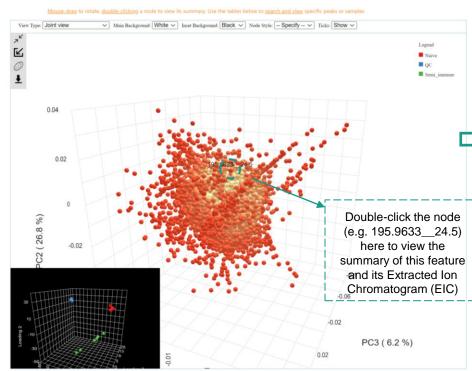

· Default/manual option will use the parameters in the current display. You can manually overwrite these settings;

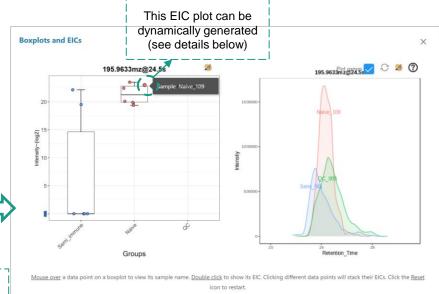
Auto-optimized will automatically select the best parameter combination (for the centWave only).

The source code for raw spectral processing is now available as the OptiLCMS R package for local installation or further extension

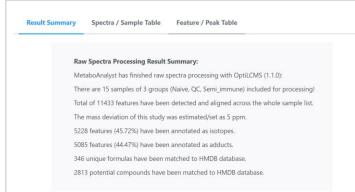



4.4 Jos Status




Job Status Link

 \times



How to use the dynamic EIC generation,

- 1. Select MS feature. From the PCA loading plot, double click the node of interest. Then a dialog will be pop-up automatically;
- 2. View the boxplot and click the sample node: The intensity of all samples are statistically summarized as a boxplot. Double any node to add the EIC of the sample to the right panel. By clicking multiple samples, you can dynamically add more layers into the EIC panel.
- 3. Reset the EIC: If you want to reset the EIC plot, click the reset circle to empty the EIC panel.

- 1. **Result Summary:** This summary box is used to summarize the basic information of this job;
- 2. Spectra/Sample Table: This table offers detailed information on all samples (see the example at the right side).
- **3.** Feature/Peak Table: This table provides detailed information on all detected features and its putative annotation (see the example from the next page).

Result Summary	Spectra / Sample Table	Feature / Peak Table			Click the " View " ic the corresponding Chromatogram of t	Total Ion
Spectra ↑↓	Grou	p ↑↓ Peaks No.	↑↓ Missing (%)) Ĵ↓ RT Range	m/z Range	View
Semi_157	Semi_ir	mmune 5850	48.83	1.91~296.45	85.048~1264.1306	6
Naive_007	Naive	4465	60.95	1.91~297.5	85.0844~1274.5201	
Naive_027	Naive	4497	60.67	1.91~297.5	85.0762~1274.5201	
Naive_071	Naive	4076	64.35	1.91~297.5	85.0844~1270.6334	
Naive_109	Naive	4518	60.48	1.91~297.5	85.0844~1270.6334	
Naive_127	Naive	4500	60.64	1.91~297.5	85.048~1274.5201	
Naive_139	Naive	4364	61.83	1.91~297.5	85.0844~1274.5201	6
QC_001	QC	5777	49.47	1.91~296.45	85.048~1264.1306	
QC_003	QC	5836	48.95	19.25~296.45	85.048~1264.1306	
QC_005	QC	5636	50.7	19.25~296.45	85.048~1264.1306	
Semi_025	Semi_ir	mmune 5634	50.72	1.91~297.5	85.048~1264.1306	

Result Summary Spectra / Sample Table Feature / Peak Table

- For isotopes/adducts annotation, the matching is based on the m/z value of its corresponding parent ion. Otherwise, it is considered as in the format of the primary ion.
- All compounds/formulas are matched to HMDB (v5) based on the mass error (ppm value) for raw spectra processing.
- Intensity is average of all samples. Coefficient of variation (CV) is also the summarized based on all samples.
- When group information is provided, p values wiil be calculated with t-test/ANOVA based on log transformed data.

							7	
m/z ↑↓	RT/s ↑↓	Intensity ↑↓	cv (%) ↑↓	P values ↑↓	FDR	Annotations	Putative IDs View	Click the " Putative ID " icon to view the putative ID results. Please note,
544.370236354959	38.6911764	1.1206938E7	45.27	6.2481402E-23	0.0			this chemical ID is generated based on the MS1 information.
684.830841124181	91.503288	4.3811566E7	49.65	1.1195928E-22	0.0			Features without the putative IDs
237.170126537048	28.9694562	8.1026999E7	51.62	8.2754042E-22	0.0	M0 M-H-		from HMDB database would not show the Icon.
293.196509329594	23.9772402	1.1601194E7	38.33	8.1127794E-21	0.0	13C/12C ACN		<i>i</i>
336.945587666283	59.710875	3.4089651E7	48.97	1.199339E-20	0.0	M0 M-H-		
238.173669143381	28.4439942	8563085.0	44.38	1.7304435E-20	0.0	13C/12C M-H-		
830.365552376317	72.322668	4.2872149E7	40.62	1.9462206E-20	0.0			Click the " View " icon to start the corresponding dynamic
125.060050295032	275.9517	5525526.0	42.88	2.8978219E-20	0.0			EIC plot panel.

Putative IDs

Formulas

C15H24O3

Compounds

1-Hydroxyepiacorone: Acorusdiol: 34->5-Abeo-4.11:4.12-diepoxy-3-eudesmanol: 48.55.78.118-11.12-Dihydroxy-110-spirovetiven-2-one: Apotrichodiol: 6alpha-Carissanol: alpha-Carissanol

Epioxylubimin: Dihydromyoporone: Piperalol

Zedoarondiol: Hydroxypelenolide: Toxin FS2: Urodiolenone: Bisacurone B: 2.3-Dihydroabscisic

alcohol: 3-Methyl-5-pentyl-2-furanpentanoic acid: 3-Methyl-5-propyl-2-furanheptanoic acid: ×

5. LC-MS1 + DDA Spectra Processing

In this section, we only emphasize the functionalities specifically related to the DDA data processing. All other MS1 associated features have been included with details in the previous section 4, therefore they won't be repeated. Please read the section 3 and 4 at first if you are not familiar with MetaboAnalyst.

5.1 Spectra Files Upload

Meta-data Table

Samples Groups PLASMA01.mzML

Plasma

MS2 MS2 MS2 MS2 MS2 MS2 - 1

				I LADINAUI IIIZINE	I Tabila	
				PLASMA02.mzML	Plasma	
				PLASMA03.mzML	Plasma	
				PLASMA05.mzML	Plasma	
LC-MS Spectra Upload				PLASMA06.mzML	Plasma	
				PLASMA07.mzML	Plasma	
MetaboAnalyst currently supports <u>mzML, mzXML, CDF or mzData formats in centroid mod</u>	e. For MS2 data, spectra should be acquired in either DDA o	r SWATH-DIA mode for each job. Mixed mode is		QC1.mzML	QC	
not supported.				QC2.mzML	QC	
1. [Required] MS1 Spectra uploaded as individual zip files - one zip (.zip) per spectrum	I [max: 200 spectra].			QC3.mzML	QC	
2. [Optional] Either DDA- or SWATH-DIA-based LC-MS/MS Spectra should be upload	led as individual zip files (same as MS1) [max: 50 spectra]. MS	52 data must start with "MS2_" or marked as "MS2"		QC4.mzML	QC	
in meta data file.				QC5.mzML	QC	
3. [Optional] Meta data uploaded as a plain text (.txt) file containing two columns - sp				QC6.mzML	QC	MCO
[Optional] Quality control (QC) spectra should start with "QC_" or marked as "QC" in	n meta data. BLANK should be marked as "BLANK" in meta d	lata for subtraction.		QCDDA_SCAN1_01		MS2
Depending on our server load, spectra processing can take a long time to complete, to avo	oid waiting:			QCDDA_SCAN1_02		MS2
				QCDDA_SCAN2_01		MS2 MS2
 For guest users (default), after job submission, click Create Bookmark URL and sav For registered users, use the buttons on the left panel to manage your projects. Lar 		heerihad usars		QCDDA_SCAN2_02		MS2
2. Por registered users, use the buttons on the fert panel to manage your projects. Larg	ger data processing and analysis support are available for su	<u>users</u> .		QCDDA_SCAN3_01 OCDDA SCAN3 02		MS2
Please Select all LC-MS1 and MS2 spectral data, then click Upload to start uploading. Once	e the uploading has completed, click Proceed to continue.	All MS2 spectra		SERUMØ1.mzML	Serum	1152
		(DDA/SWATH-DIA) files		SERUMØ2.mzML	Serum	
+ Select		must be grouped as "MS2".	L	SERUM03.mzML	Serum	
				SERUNDS INZUL	Seruiii	
		č		SERIMON m7MI	Sonum	
	For I C MS1 + DDA data	Otherwise, these files won't		SERUM04.mzML	Serum	
	For LC-MS1 + DDA data	č		SERUM05.mzML	Serum	
	processing, you should	Otherwise, these files won't		SERUM05.mzML SERUM06.mzML	Serum Serum	lood
Select Mode: MS1 Only O MS1+DDA MS1+SWATH-DIA		Otherwise, these files won't		SERUM05.mzML SERUM06.mzML WB01.mzML	Serum Serum whole_b	
Select Mode: MS1 Only O MS1+DDA MS1+SWATH-DIA	processing, you should	Otherwise, these files won't		SERUM05.mzML SERUM06.mzML WB01.mzML WB02.mzML	Serum Serum whole_b whole_b	lood
	processing, you should choose " MS1 + DDA "	Otherwise, these files won't		SERUM05.mzML SERUM06.mzML WB01.mzML WB02.mzML WB03.mzML	Serum Serum whole_b whole_b whole_b	lood lood
Select Mode: MS1 Only MS1+DDA MS1+SWATH-DIA	processing, you should	Otherwise, these files won't		SERUM05.mzML SERUM06.mzML WB01.mzML WB02.mzML	Serum Serum whole_b whole_b	lood lood lood

5.2 Integrity Check

Data Integrity Check:

1. Spectral Format - only mzML, mzXML, mzData and netCDF formats are currently supported;

2. MS Mode - only spectra in centroid mode are supported in the online platform. Click Convert to centroid your profile data online. This conversion process will take some time, please be patient ...

- 3. If a meta data file is provided;
 - The first column (spectral names) must match the sample names in the meta-data file;
 - The second column (group labels) must contain at least two groups (not including QC), each containing ≥ 3 replicates.

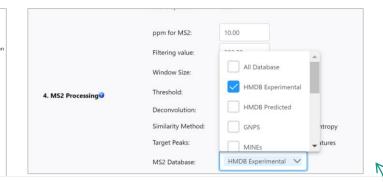
 The second column (group labels) mu 	ist contain at least two groups (not incluc		Integrity Check page		
Spectra	Centroid	Size (MB)	MS Level	Group	Convert Include
QCDDA_SCAN1_01.mzML	True	6.9	MS2	MS2	
QCDDA_SCAN2_02.mzML	True	3.9	MS2	MS2	
QCDDA_SCAN1_02.mzML	True	6.9	MS2	MS2	
QCDDA_SCAN3_02.mzML	True	2.2	MS2	MS2	
QC5.mzML	True	6.6	MS1	QC	
QC3.mzML	True	6.6	MS1	QC	
QC4.mzML	True	6.6	MS1	QC	
QC6.mzML	True	6.6	MS1	QC	
QC2.mzML	True	6.6	MS1	QC	
			L	1	

MS Levels,

For MS2 data processing,

MS level is indicated at the

- MS1: These files will be used for MS1 feature detection only. Detected features could be used as the target features list for MS2 data processing;
- 2. MS2: MS1 feature detection will not be performed for these files. They will be only used for MS2 feature detection.


5.3 Parameter Setting

LC-MS/MS Spectra Processing

MetaboAnalyst currently supports four algorithms for raw spectral peak picking - centWave, Asari, MatchedFilter and Massifguant;

An auto-optimized workflow has been implemented for centWave. The auto-optimized procedure can significantly improve both the quality of peak detection and quantification (see benchmarking results). The source code for raw spectral processing is now available as the OptILCMS R package for local installation or further extension.

	LC-MS Platform	Generic 🗸	
	1. Peak Picking�	Algorithms:	centWave-auto 🗸
	2. Peak Alignment@	minFraction:	0.80
		Polarity:	O Positive O Negative
	3. Peak Annotation	Adducts:	View
Deremo	ters for MS2	More options	View
	essing needs	ppm for MS2:	10.00
to be offe	ered based on	Filtering value:	200.00
MS in	struments	Window Size:	1.50
	4. MS2 Processing	Threshold:	100,000.00
		Deconvolution:	
		Similarity Method:	O Dot Product O Spectral Entropy
		Target Peaks:	Signifcant Ones All Features
		MS2 Database:	HMDB Experimental
	5. Contaminant Removal		View
	6. Blank Subtraction		
		Submit Job	

MS2 Processing Parameters,

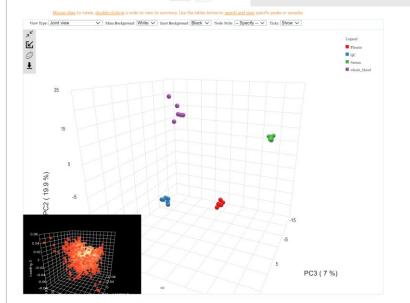
- 1. Window Size: For DDA data acquisition, there must a fixed window size setup to ion acquisition. It is usually a narrow window, e.g. 1~3Da;
- 2. Threshold: MS/MS acquisition usually requires a threshold to exclude the lowintensity ions to ensure the quality of acquired spectrum;
- 3. Deconvolution: Deconvolution on DDA spectra can be optionally disabled;
- Target Peaks: MS2 spectra data processing is based on the MS1 feature detection results. User could choose use significantly different features (p < 0.05) or all features as targets.
- MS2 Databases: Multiple MS2 spectra databases have been curated and included for database searching. User could use one or more to search. Please note that use "All Database" option will significantly increase the data processing time.

5.4 Jos Status

	in, please click Create Job URL and save the job link. You can then close the current page and come back later using this lin	
At any time during data	a analysis, <mark>keep only one active web page open</mark> (except static web pages), as multiple tabs/windows will interfere with each o	other, leading to unpredictable res
	Job Status	
1.1.18		
Job ID: Bookmark Link:	9687	
	Create Job URL	
Current Status:	Running Level 1	
Priority:		
Parameters:	Save	
Job Progress:	55%	
	+ mes = paste0('Step 7/12: MS/MS data imported completely!	
	+ + ').	The statu
	+ p, + ecol = ",	total of 1
	+ progress = 110	
	*2	
	Step 7/12: MS/MS data imported completely!	Step 1 to
Text Output:	mSet <- PerformDDADeconvolution(mSet,	data imp
	+ ppm1 = 5.0, ppm2 = 10.0, sn = 12, filtering = 200.0, window_size = 1.5, intensity_thresh = 100000.0,	annotatio
	database_path = '/home/glassfish/sqlite/MS2ID_Complete_v09102023.sqlite',	annotatio
	+ ncores = 4L, decoOn = TRUE, useEntropy = FALSE); Loading required package: parallel	
	Loading required package, paraller	Step 7 to
		data imp
Output File:	Status Text 2024-03-10 00:54:05	concensi

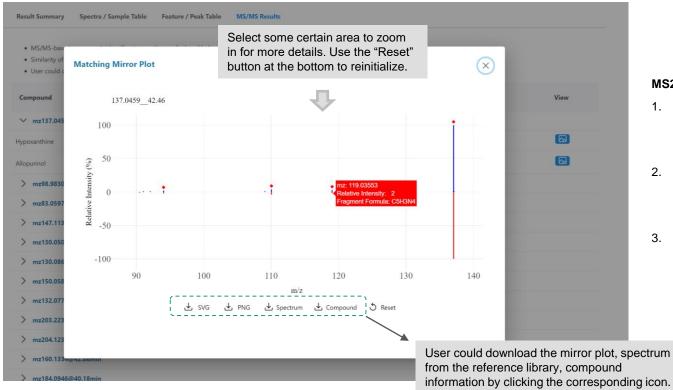
The status and processing logs are displayed here. A otal of 12 steps will appear for MS1 + DDA:

Step 1 to 6: LC-MS1 spectra processing, including data import, peak picking, alignment, gap filling, peak annotation and LC-MS1 results export;


Step 7 to 12: LC-MS2 spectra processing, including data import, spectra deconvolution, spectra concensus, database searching and results export.

PCA Visualization Intensity Stats TIC Plot BPI Plot

Y PCA Load


PCA Scores: Based on all peaks

All processed results are displayed at the results, including MS1 spectra processing results (summary and visualization) and MS2 results.

Update

	mary Spectra /	Sample Table	Feature / Peak Table	MS/MS Results	
					1
	Raw Spectra Pro	ocessing Result	Summary:		- <u>N</u>
	MetaboAnalyst h	as finished raw	spectra processing with OptiLC	MS (1.1.0):	
	There are 24 sam	ples of 4 groups	(Plasma, QC, Serum, whole_bl	ood) included for proc	essing
	Total of 4910 fea	tures have been	detected and aligned across th	ne whole sample list.	i i
	The mass deviati	on of this study	was estimated/set as 5 ppm.		
	2421 features (49	9.3%) have been	annotated as isotopes.		
	2319 features (47	7.22%) have beer	n annotated as adducts.		
	191 unique form	ulas have been r	natched to HMDB database.		1
	1725 potential co	ompounds have	been matched to HMDB datab	ase.	i
					- j
					12
					· ·
Result Summary Spec	ctra / Sample Table Feature / F	Peak Table MS/MS Res	ults		
MS/MS-based compore Similarity of MS/MS ar	unds identification results are display re evaluated based on dot-product or	ed below. r spectral entropy methods. 1	ults fop 5 compounds are listed from high to low (100, per	fect match; 0, not matched).	
MS/MS-based compore Similarity of MS/MS ar User could click View I	unds identification results are display	ed below. r spectral entropy methods. ' tern matching results.	Top 5 compounds are listed from high to low (100, per		View
MS/MS-based compo Similarity of MS/MS at User could click View I Compound	unds identification results are display re evaluated based on dot-product or button below to view the MS/MS pat Formula	ed below. r spectral entropy methods. 1	Top 5 compounds are listed from high to low (100, per	fect match; 0, not matched). Database	View
MS/MS-based compoon Similarity of MS/MS an User could click View I Compound mz137.0459@42.46n	unds identification results are display re evaluated based on dot-product or button below to view the MS/MS pat Formula	ed below. r spectral entropy methods. ' tern matching results.	Top 5 compounds are listed from high to low (100, per		View
MS/MS-based compo Similarity of MS/MS ar User could click View I Compound	unds identification results are display re evaluated based on dot-product or button below to view the MS/MS pat Formula min	ed below. r spectral entropy methods: 1 tern matching results. Matching Score	top 5 compounds we listed from high to low (100, per †1 techtikey	Database	
MS/MS-based compo Similarity of MS/MS as User could click View I Compound mz137.0459@42.46a typoxanthine	undi sientification results are display ne evaluated based on dot-product on botton below to view the KSAMS part Formula CSH4940 CSH4940	ed below. spectral entropy methods. tern matching results. Matching Score 84.79	Tip 5 compounds are listed from high to low (100, per Til Inshifkey FDGQSTZJBFJUBT-UHTFFACYSA-N	Database HMDB_experimental	8
MS/MS-based comport Similarity of MS/MS at User could click View I Compound wr137.0459@42.46e ypoxanthine Ilopurinol	unds identification results are displayed re realizated based on dot-product on button below to view the MS/MS part Formula (SH4840 (SH4840 cSH4840 ain	ed below. spectral entropy methods. tern matching results. Matching Score 84.79	Tip 5 compounds are listed from high to low (100, per Til Inshifkey FDGQSTZJBFJUBT-UHTFFACYSA-N	Database HMDB_experimental	8
MS/MS-based compo Similarity of MS/MS as User could click View I Compound ma137.0459e42.46e yposanthine Ilopurinol ms98.9830e51.97m	unds identification results are displayed re evaluated based on dot-product or touton below to view the MS/MS part Formula (SH4040 CSH4040 ain ain	ed below. spectral entropy methods. tern matching results. Matching Score 84.79	Tip 5 compounds are listed from high to low (100, per Til Inshitkey FDGQ5TZ/BFUBT-UNFFFACYSA-N OFCXXPD-NRXKPPY-UNFFFACYSA-N	Database HMDB_seperimental HMDB_seperimental	2
MS/A5-based compo Similarity of MS/A5 as User could click View I Compound wm137.0459@42.46 wm282.943.0651.97m ms83.0597@45.80m ms83.0597@45.80m ms130.5057@43.26 wm130.0501@43.26	unda skertification results are display er enabatatel based on dot-product os botton beloer to view the MS/MS part os cSH4840 cSH4840 cSH4840 sin os nin sin sin sin	ed below. spectral entropy methods. tern matching results. Matching Score 84.79	T1 Installing T0 Installing FDDGSTZJEFUET-INFFEROYSA-N OFCN07DARW/PPV-UNFFEROYSA-N MS2 results are su	Database HMDB_reperimental HMDB_reperimental HMDB_reperimental	Dia specific tak
MS/A5-based compo Similarity of MG/M3 at User could click View I Compound wm137.0459@42.46c yposanthine Biopurinol ms39.9430@51.97m ms39.94500m ms39.	unda siertification results are display re evaluated based on dot-product os botton below to view the MS/MS part Pormula cSH4840 cSH4840 cSH4840 sin non non non non non non non non non n	ed below. spectral entropy methods. tern matching results. Matching Score 84.79	T1 textbilley T0 textbilley FD0051728F0UBF.MHFFACYSA-N OFCN07DAWN/PPY-UHFFACYSA-N MS22 results are su MS/MS results. All	Database HMDR_reperimental HMDR_reperimental	De specific tal
MS/A5-based compo Similarity of MS/A5 as User could click View I Compound wm137.0459@42.46 wm282.943.0651.97m ms83.0597@45.80m ms83.0597@45.80m ms130.5057@43.26 wm130.0501@43.26	re valuated based on dot-product os ere valuated based on dot-product os botton belove to view the MS/MS pate CSH4840 CSH4840 inin cSH4840 inin minin minin minin	ed below. spectral entropy methods. tern matching results. Matching Score 84.79	T1 Installing T0 Installing FDDGSTZJEFUET-INFFEROYSA-N OFCN07DARW/PPV-UNFFEROYSA-N MS2 results are su	Database HMDR.septimental HMDR.septimental HMDR.septimental detected feature er could click th	De specific tal ures are show e expand ico

MS2 results visualization,

- Information of fragments will be automatically displayed when mouse hover the fragment;
- The top (blue) part are users' input, while the bottom (red) parts are from the reference library;
- All matched fragments will be marked with red diamond at the top.

6. LC-MS1 + SWATH-DIA Spectra Processing

In this section, we only emphasize the functionalities specifically related to the SWATH-DIA data processing. All other MS1 associated features have been included with details in the previous section 4, therefore they won't be repeated here. Please read the section 3 and 4 at first if you are not familiar with MetaboAnalyst.

6.1 Spectra Files Upload

LC-MS Spectra Upload

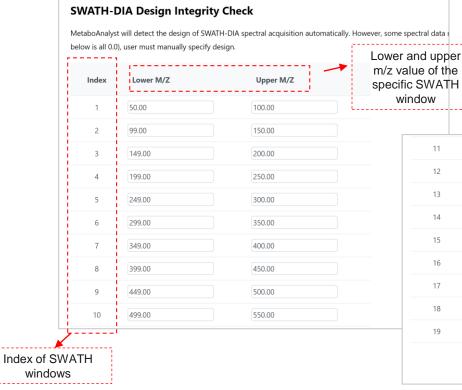
MetaboAnalyst currently supports <u>mzML, mzXML, CDF or mzData formats in centroid mode</u>. For MS2 data, spectra should be acquired in either **DDA** or **SWATH-DIA** mode for each job. Mixed mode is not supported.

- 1. [Required] MS1 Spectra uploaded as individual zip files one zip (.zip) per spectrum [max: 200 spectra].
- 2. [Optional] Either DDA- or SWATH-DIA-based LC-MS/MS Spectra should be uploaded as individual zip files (same as MS1) [max: 50 spectra]. MS2 data must start with "MS2_" or marked as "MS2" in meta data file.
- 3. [Optional] Meta data uploaded as a plain text (.txt) file containing two columns spectral names and group labels [example]
- 4. [Optional] Quality control (QC) spectra should start with "QC_" or marked as "QC" in meta data. BLANK should be marked as "BLANK" in meta data for subtraction.

Depending on our server load, spectra processing can take a long time to complete, to avoid waiting:

- 1. For guest users (default), after job submission, click Create Bookmark URL and save the URL so you can return later to check your job status.
- 2. For registered users, use the buttons on the left panel to manage your projects. Larger data processing and analysis support are available for subscribed users.

Please Select all LC-MS1 and MS2 spectral data, then click Upload to start uploading. Once the uploading has completed, click Proceed to continue.



For metadata file, all MS2 spectra (DDA/SWATH-DIA) files must be grouped as "MS2". Otherwise, these files won't be detected as MS2 files.

6.2 Integrity Check

Di	ata Integrity Check: 1. Spectral Format - only mzML, mzXML, mzData a 2. MS Mode - only spectra in centroid mode are s please be patient			ert to centroid your	r profile data on	line. This conversion process will take some time,
	 3. If a meta data file is provided; The first column (spectral names) must m The second column (group labels) must of 	≥ 3 replicates.	For MS2 data processing, MS level is indicated at the Integrity Check page			
	Spectra	Centroid	Size (MB)	MS Level	Group	Convert Include
	Covid_Cov_19_MS.mzML	True	21.8	MS1	COVID	
	Covid_Cov_18_MS.mzML	True	21.8	MS1	COVID	
	Covid_Cov_23_MS.mzML	True	21.6	MS1	COVID	
	Covid_Cov_24_MS.mzML	True	22.0	MS1	COVID	
	Covid_Cov_21_MS.mzML	True	22.0	MS1	COVID	
	Covid_Cov_22_MS.mzML	True	21.6	MS1	COVID	
	Covid_Ct_1_MS2.mzML	True	78.5	MS2	MS2	
	Covid_Ct_2_MS2.mzML	True	76.5	MS2	MS2	
	Covid_Cov_17_MS2.mzML	True	83.0	MS2	MS2	
	Covid_Cov_16_MS2.mzML	True	84.2	MS2	MS2	

6.3 SWATH window check

SWATH-DIA Design window:

This is the most critical parameter for SWATH-DIA spectra processing. MetaboAnalyst could automatically detect the SWATH window information from uploaded files. However, some raw spectra files may not contain the information. In this case, MetaboAnalyst could only identify the total number of windows in an experiment cycle, and users must manually specify the SWATH Window information here.

11	549.00	600.00
12	599.00	650.00
13	649.00	700.00
14	699.00	750.00
15	749.00	800.00
16	799.00	850.00
17	849.00	900.00
18	899.00	950.00
19	949.00	1,000.00
		Confirm Click "Confirm" to continue

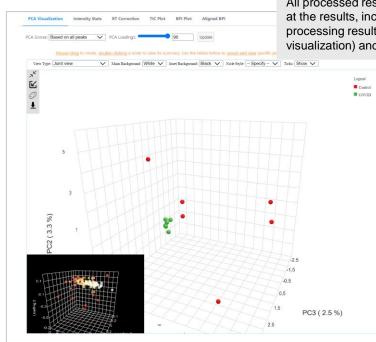
6.4 Parameter Setting

LC-MS/MS Spectra Processing

MetaboAnalyst currently supports four algorithms for raw spectral peak picking - centWave, Asari, MatchedFilter and Massifguant;

An auto-optimized workflow has been implemented for centWave. The auto-optimized procedure can significantly improve both the quality of peak detection and quantification (see <u>benchmarking results</u>). The source code for raw spectral processing is now available as the <u>OptiLCMS</u> R package for local installation or further extension.

LC-MS Platform	Generic 🗸				
1. Peak Picking	Algorithms:	centWave-auto 🗸			
2. Peak Alignment@	minFraction:	0.80			
3. Peak Annotation	Polarity: Adducts: More options	O Positive O Negative View View			
4. MS2 Processing 🕢	ppm for MS2: Filtering value: Similarity Method: Target Peaks: MS2 Database:	10.00 200.00 Dot Product Spectral Entropy Signifcant Ones All Features HMDB Experimental	1 1	Parameters for M rocessing. Pleas section 5.3 for explanations or parameter	e refer to more these
5. Contaminant Removal		View			
6. Blank Subtraction					
	Submit Job				


6.5 Jos Status

	Job Status	_
Job ID:	9689	
Bookmark Link:	Create Job URL	
Current Status:	Running	
Priority:	Level 1	
Parameters:	Save	
Job Progress:	75%	
Text Output:	this step may take some time. mSet <- PerformDBSearchingBatch (mSet, + ppm1 = 5.0, + ppm2 = 10.0, + rt, tol = 5, + database_path = '/home/glassfish/sqlite//MS2ID_Complete_v09102023.sqlite', + use_rt = FALSE, enableNL = FALSE, ncores = 4L, useEntropy = FALSE, + databaseOptions = c('hmdb_exp')); Loading required package: parallel ==== Database searching against MS2ID_Complete_v09102023.sqlite started ====	•

The status and processing logs are displayed here. A total of 12 steps will appear for MS1 + SWATH-DIA:

Step 1 to 6: LC-MS1 spectra processing, including data import, peak picking, alignment, gap filling, peak annotation and LC-MS1 results export;

Step 7 to 12: LC-MS2 spectra processing, including data import, spectra deconvolution, spectra concensus, database searching and results export. Different from DDA, spectra deconvolution is required for DIA spectra dataset.

All processed results are displayed at the results, including MS1 spectra processing results (summary and visualization) and MS2 results. Result Summary Spectra / Sample Table Feature / Peak Table MS/MS Results

For isotopes/adducts annotation, the matching is based on the m/z value of its corresponding parent ion. Otherwise, it is considered as in the format of the primary ion.

All compounds/formulas are matched to <u>HMDB</u> (v5) based on the mass error (ppm value) for raw spectra processing.

Intensity is average of all samples. Coefficient of variation (CV) is also the summarized based on all samples.

Feature / Peak Tal

· When group information is provided, p values wiil be calculated with t-test/ANOVA based on log transformed data

m/z ↑↓	RT/s ↑↓	Intensity ↑↓	cv (%) †↓	P values ↑↓	FDR	Annotations	Putative IDs	View
160.8422	79.23	11036.9	46.45	1.5068802E-4	0.01476743			6
217.0301	84.55	215276.0	10.02	0.0027741963	0.0659002			6
117.0555	138.64	20089.0	25.41	0.0029012625	0.0659002			6
96.9598	72.13	38909.9	14.77	0.0036270983	0.0659002			6
678.5083	81.66	9218.9	69.89	0.0065294412	0.0659002			6
215.0331	84.66	577626.3	8.77	0.0082779721	0.0659002		=	6

MS2 results are summarized in the tab, MS/MS results. (see more details from section 5.4 and 5.5).

to download results

MS/MS-based compounds identification results are displayed below.

Result Summary Spectra / Sample Table

 Similarity of MS/MS are evaluated based on dot-product or spectral entropy methods. Top 5 compounds are listed from high to low (100, perfect match: 0, not matched). · User could click View button below to view the MS/MS pattern matching results Matching Score InchiKen Compound Formula Database 11 ✓ mz146.0457@74.06sec L-Glutamic acid WHEILITDRIXIRKMK-VKHMYHEASA-N HMD8 experiment 57.16 O-Acetylserine C5H9NO4 57.16 VZXPDPZARILFQX-BYPYZUCNSA-N HMDB experimenta > mz160.9202@83.59sec « « 1 > » 50 v Click "Download Page"

MS/MS R

7 Result Downloading

Results Download Start New Jou	irney		
Generate Report			
Download.zip	compound_msn_results.csv		
Rhistory.R	mirror_plotting_1_0_72.json	All results can be	
spectra_3d_loading.json	mirror_plotting_1_0_72.png	downloaded her	
metaboanalyst_input.csv	BPIS_72.png	L	
TICS_72.png	Peak_Intensity.png		
peak_feature_summary.csv	PCA.png		

In summary

If you have any questions, please read/post into <u>OmicsForum</u> (<u>www.omicsforum.ca</u>)

Or contact us:

zhiqiang.pang[at]xialab.ca

jeff.xia[at]xialab.ca

• Raw spectra files must be saved in common opensource formats and uploaded individually as separate zip files.

• LC-MS spectra data is mandatory, while MS2 is optional. Upon data uploading, MetaboAnalyst 6.0 automatically validates the status of MS files.

• For SWATH-DIA data, the SWATH window design is automatically extracted from the spectra. If the related information is missing, users will be prompted to enter the window design manually.

• On the parameters setting page, users are given the option to choose the default auto-optimized centWave algorithm or use the *asari* algorithm for LC-MS data processing.

• If MS2 data is included, spectra deconvolution, consensus, and database searching are performed automatically, using the MS features as target list. Once the spectra processing is complete, users can explore both MS and MS2 data processing results.